5. Trigonometric Functions

Exercise 5.1

1. Question

Prove the following identities

 $\sec^4 x - \sec^2 x = \tan^4 x + \tan^2 x$

Answer

LHS = $\sec^4 x - \sec^2 x$ = $(\sec^2 x)^2 - \sec^2 x$ <u>We know $\sec^2 \theta = 1 + \tan^2 \theta$ </u>. = $(1 + \tan^2 x)^2 - (1 + \tan^2 x)$ = $1 + 2\tan^2 x + \tan^4 x - 1 - \tan^2 x$ = $\tan^4 x + \tan^2 x = RHS$

Hence proved.

2. Question

Prove the following identities

 $\sin^6 x + \cos^6 x = 1 - 3 \sin^2 x \cos^2 x$

Answer

LHS = $\sin^{6}x + \cos^{6}x$ = $(\sin^{2}x)^{3} + (\cos^{2}x)^{3}$ <u>We know that $a^{3} + b^{3} = (a + b)(a^{2} + b^{2} - ab)</u>$ $= <math>(\sin^{2}x + \cos^{2}x)[(\sin^{2}x)^{2} + (\cos^{2}x)^{2} - \sin^{2}x\cos^{2}x]$ <u>We know that $\sin^{2}x + \cos^{2}x = 1$ and $a^{2} + b^{2} = (a + b)^{2} - 2ab$ </u> = $1 \times [(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x - \sin^{2}x\cos^{2}x]$ = $1^{2} - 3\sin^{2}x\cos^{2}x$ = $1^{2} - 3\sin^{2}x\cos^{2}x = RHS$ Hence proved. **3. Question**</u>

Prove the following identities

 $(\operatorname{cosecx} - \operatorname{sinx})(\operatorname{secx} - \operatorname{cosx})(\operatorname{tanx} + \operatorname{cotx}) = 1$

Answer

LHS = (cosecx - sinx) (secx - cosx) (tanx + cotx)
We know that cosec
$$\theta = \frac{1}{\sin\theta}$$
; sec $\theta = \frac{1}{\cos\theta}$; tan $\theta = \frac{\sin\theta}{\cos\theta}$ and $\cot\theta = \frac{\cos\theta}{\sin\theta}$
 $= \left(\frac{1}{\sin x} - \sin x\right) \left(\frac{1}{\cos x} - \cos x\right) \left(\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}\right)$
 $= \frac{1 - \sin^2 x}{\sin x} \times \frac{1 - \cos^2 x}{\cos x} \times \frac{\sin^2 x + \cos^2 x}{\sin x \cos x}$

We know that $\sin^2 x + \cos^2 x = 1$.

$$=\frac{\cos^2 x}{\sin x} \times \frac{\sin^2 x}{\cos x} \times \frac{1}{\sin x \cos x}$$

= 1 = RHS

Hence proved.

4. Question

Prove the following identities

cosecx (secx - 1) - cotx (1 - cosx) = tanx - sinx

Answer

LHS = cosecx (secx - 1) - cotx (1 - cosx)

We know that
$$\csc \theta = \frac{1}{\sin \theta}$$
; $\sec \theta = \frac{1}{\cos \theta}$; $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$

$$= \frac{1}{\sin x} \left(\frac{1}{\cos x} - 1\right) - \frac{\cos x}{\sin x} (1 - \cos x)$$

$$= \frac{1}{\sin x} \left(\frac{1 - \cos x}{\cos x}\right) - \frac{\cos x}{\sin x} (1 - \cos x)$$

$$= \left(\frac{1 - \cos x}{\sin x}\right) \left(\frac{1}{\cos x} - \cos x\right)$$

$$= \left(\frac{1 - \cos x}{\sin x}\right) \left(\frac{1 - \cos^2 x}{\cos x}\right)$$

<u>We know that $1 - \cos^2 x = \sin^2 x$.</u>

$$= \left(\frac{1 - \cos x}{\sin x}\right) \left(\frac{\sin^2 x}{\cos x}\right)$$
$$= (1 - \cos x) \left(\frac{\sin x}{\cos x}\right)$$
$$= \frac{\sin x}{\cos x} - \sin x$$
$$= \tan x - \sin x$$

= RHS

Hence proved.

5. Question

Prove the following identities

$$\frac{1-\sin x \cos x}{\cos x (\sec x - \csc x)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} = \sin x$$

Answer

 $LHS = \frac{1 - \sin x \cos x}{\cos x (\sec x - \csc x)} \times \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x}$ We know that $\csc \theta = \frac{1}{\sin \theta}$; $\sec \theta = \frac{1}{\cos \theta}$ $= \frac{1 - \sin x \cos x}{\cos x (\frac{1}{\cos x} - \frac{1}{\sin x})} \times \frac{(\sin x)^2 - (\cos x)^2}{(\sin x)^3 + (\cos x)^3}$

$$\frac{\text{We know that } a^3 + b^3 = (a + b) (a^2 + b^2 - ab)}{(a + b) (a^2 + b^2 - ab)}$$

$$= \frac{1 - \sin x \cos x}{\cos x (\frac{\sin x - \cos x}{\cos x \sin x})} \times \frac{(\sin x + \cos x)(\sin x - \cos x)}{(\sin x + \cos x) [(\sin x)^2 + (\cos x)^2 - \sin x \cos x]}$$

$$= \frac{\sin x (1 - \sin x \cos x)}{\sin x - \cos x} \times \frac{(\sin x + \cos x)(\sin x - \cos x)}{(\sin x + \cos x) [(\sin x)^2 + (\cos x)^2 - \sin x \cos x]}$$

$$= \frac{\sin x (1 - \sin x \cos x)}{1} \times \frac{1}{[(\sin x)^2 + (\cos x)^2 - \sin x \cos x]}$$
We know that $\sin^2 x + \cos^2 x = 1$.

$$= \sin x \left(1 - \sin x \cos x\right) \times \frac{1}{\left(1 - \sin x \cos x\right)}$$

= sinx

= RHS

Hence proved.

6. Question

Prove the following identities

 $\frac{\tan x}{1 - \cot x} + \frac{\cot x}{1 - \tan x} = (\sec x \csc x + 1)$

Answer

 $\mathsf{LHS} = \frac{\tan x}{1 - \cot x} + \frac{\cot x}{1 - \tan x}$ We know that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$ sin x COS X $=\frac{\frac{\cos x}{\cos x}}{1-\frac{\cos x}{\sin x}}+\frac{\frac{\sin x}{\sin x}}{1-\frac{\sin x}{\cos x}}$ sin x $=\frac{\frac{\sin x}{\cos x}}{\frac{\sin x - \cos x}{\sin x}} + \frac{\frac{\cos x}{\sin x}}{\frac{\cos x - \sin x}{\cos x - \sin x}}$ cosx sin x COSX $=\frac{\sin^2 x}{\cos x (\sin x - \cos x)} - \frac{\cos^2 x}{\sin x (\sin x - \cos x)}$ $\sin^3 x - \cos^3 x$ $=\frac{1}{\sin x \cos x (\sin x - \cos x)}$ <u>We know that $a^3 - b^3 = (a - b)(a^2 + b^2 + ab)</u></u>$ $\frac{(\sin x - \cos x) \left[(\sin x)^2 + (\cos x)^2 + \sin x \cos x\right]}{\sin x \cos x (\sin x - \cos x)}$ We know that $\sin^2 x + \cos^2 x = 1$. $=\frac{\left[1+\sin x \cos x\right]}{\sin x \cos x}$ $=\frac{1}{\sin x \cos x}+\frac{\sin x \cos x}{\sin x \cos x}$ $=\frac{1}{\sin x}\times\frac{1}{\cos x}+1$

We know that $\csc \theta = \frac{1}{\sin \theta}$; $\sec \theta = \frac{1}{\cos \theta}$

- $= \cos ex \times secx + 1$
- = secx cosecx + 1
- = RHS

Hence proved.

7. Question

Prove the following identities

$$\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2$$

Answer

 $LHS = \frac{\sin^{3} x + \cos^{3} x}{\sin x + \cos x} + \frac{\sin^{3} x - \cos^{3} x}{\sin x - \cos x}$ <u>We know that $a^{3} \pm b^{3} = (a \pm b) (a^{2} + b^{2} \pm ab)$ </u> $= \frac{(\sin x + \cos x) [(\sin x)^{2} + (\cos x)^{2} - \sin x \cos x]}{\sin x + \cos x}$ $+ \frac{(\sin x - \cos x) [(\sin x)^{2} + (\cos x)^{2} + \sin x \cos x]}{\sin x - \cos x}$

<u>We know that $\sin^2 x + \cos^2 x = 1$.</u>

- $= 1 \sin x \cos x + 1 + \sin x \cos x$
- = 2
- = RHS

Hence proved.

8. Question

Prove the following identities

 $(\sec x \sec y + \tan x \tan y)^2 - (\sec x \tan y + \tan x \sec y)^2 = 1$

Answer

LHS = $(\sec x \sec y + \tan x \tan y)^2$ - $(\sec x \tan y + \tan x \sec y)^2$

= $[(\sec x \sec y)^2 + (\tan x \tan y)^2 + 2 (\sec x \sec y) (\tan x \tan y)] - [(\sec x \tan y)^2 + (\tan x \sec y)^2 + 2 (\sec x \tan y) (\tan x \sec y)]$

```
= [\sec^2 x \sec^2 y + \tan^2 x \tan^2 y + 2 (\sec x \sec y) (\tan x \tan y)] - [\sec^2 x \tan^2 y + \tan^2 x \sec^2 y + 2 (\sec^2 x \tan^2 y) (\tan x \sec y)]
```

 $= \sec^2 x \sec^2 y - \sec^2 x \tan^2 y + \tan^2 x \tan^2 y - \tan^2 x \sec^2 y$

$$= \sec^2 x (\sec^2 y - \tan^2 y) + \tan^2 x (\tan^2 y - \sec^2 y)$$

$$= \sec^2 x (\sec^2 y - \tan^2 y) - \tan^2 x (\sec^2 y - \tan^2 y)$$

We know that $\sec^2 x - \tan^2 x = 1$.

$$= \sec^2 x \times 1 - \tan^2 x \times 1$$

$$= \sec^2 x - \tan^2 x$$

Get More Learning Materials Here : 📕

Regional www.studentbro.in

Hence proved.

9. Question

Prove the following identities

 $\frac{\cos x}{1-\sin x} = \frac{1+\cos x+\sin x}{1+\cos x-\sin x}$

Answer

 $\mathsf{RHS} = \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}$ $=\frac{(1+\cos x)+(\sin x)}{(1+\cos x)-(\sin x)}$ $=\frac{(1+\cos x)+(\sin x)}{(1+\cos x)-(\sin x)}\times\frac{(1+\cos x)+(\sin x)}{(1+\cos x)+(\sin x)}$ $=\frac{[(1+\cos x)+(\sin x)]^2}{(1+\cos x)^2-(\sin x)^2}$ $=\frac{(1+\cos x)^2+(\sin x)^2+2(1+\cos x)(\sin x)}{(1+\cos^2 x+2\cos x)-(\sin^2 x)}$ $= \frac{1 + \cos^2 x + 2\cos x + \sin^2 x + 2\sin x + 2\sin x \cos x}{1 + \cos^2 x + 2\sin x \cos x}$ $1 + \cos^2 x + 2\cos x - \sin^2 x$ We know that $\sin^2 x + \cos^2 x = 1$. $=\frac{1+1+2\cos x+2\sin x+2\sin x\cos x}{(1-\sin^2 x)+\cos^2 x+2\cos x}$ We know that $1 - \cos^2 x = \sin^2 x$. $2 + 2\cos x + 2\sin x + 2\sin x\cos x$ $\cos^2 x + \cos^2 x + 2\cos x$ $2 + 2\cos x + 2\sin x + 2\sin x \cos x$ ____ $2\cos^2 x + 2\cos x$ $2 + 2\cos x + 2\sin x + 2\sin x\cos x$ = - $\cos^2 x + \cos^2 x + 2 \cos x$ $1 + \cos x + \sin x + \sin x \cos x$ = cosx(cosx+1) $=\frac{1(1+\cos x)+\sin x\left(\cos x+1\right)}{\cos x\left(\cos x+1\right)}$ $=\frac{(1+\sin x)(\cos x+1)}{\cos x(\cos x+1)}$ $=\frac{1+\sin x}{\cos x}\times\frac{\cos x}{\cos x}$ $=\frac{(1+\sin x)\cos x}{\cos^2 x}$ We know that $1 - \sin^2 x = \cos^2 x$. $=\frac{(1+\sin x)\cos x}{1-\sin^2 x}$

$$= \frac{(1 + \sin x) \cos x}{(1 - \sin x)(1 + \sin x)}$$
$$= \frac{\cos x}{1 - \sin x}$$
$$= LHS$$

Hence proved.

10. Question

Prove the following identities

 $\frac{\tan^3 x}{1+\tan^2 x} + \frac{\cot^3 x}{1+\cot^2 x} = \frac{1-2\sin^2 x \cos^2 x}{\sin x \cos x}$

Answer

 $\mathsf{LHS} = \frac{\tan^3 x}{1{+}\tan^2 x} + \frac{\cot^3 x}{1{+}\cot^2 x}$

We know that $1 + \tan^2 x = \sec^2 x$ and $1 + \cot^2 x = \csc^2 x$

$$= \frac{\tan^3 x}{\sec^2 x} + \frac{\cot^3 x}{\csc^2 x}$$
$$= \frac{\frac{\sin^3 x}{\cos^3 x}}{\frac{1}{\cos^2 x}} + \frac{\frac{\cos^3 x}{\sin^3 x}}{\frac{1}{\sin^2 x}}$$
$$= \frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x}$$
$$= \frac{\sin^4 x + \cos^4 x}{\cos x \sin x}$$
$$= \frac{(\sin^2 x)^2 + (\cos^2 x)^2}{\cos x \sin x}$$

<u>We know that $a^2 + b^2 = (a + b)^2 - 2ab$ </u>

$$=\frac{(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x}{1 + \cos^2 x \cos^2 x}$$

sin x cos x

<u>We know that $\sin^2 x + \cos^2 x = 1$.</u>

$$= \frac{1^2 - 2\sin^2 x \cos^2 x}{\sin x \cos x}$$
$$= \frac{1 - 2\sin^2 x \cos^2 x}{\sin x \cos x}$$

= RHS

Hence proved.

11. Question

Prove the following identities

$$1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x} = \sin x \cos x$$

Answer

$$LHS = 1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x}$$

We know that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$
$$= 1 - \frac{\sin^2 x}{1 + \frac{\cos x}{\sin x}} - \frac{\cos^2 x}{1 + \frac{\sin x}{\cos x}}$$
$$= 1 - \frac{\sin^3 x}{\sin x + \cos x} - \frac{\cos^3 x}{\sin x + \cos x}$$
$$= \frac{\sin x + \cos x - (\sin^3 x + \cos^3 x)}{\sin x + \cos x}$$

We know that $a^3 + b^3 = (a + b) (a^2 + b^2 - ab)$
$$= \frac{\sin x + \cos x - ((\sin x + \cos x)(\sin x)^2 + (\cos x)^2 - \sin x \cos x))}{\sin x + \cos x}$$
$$= \frac{(\sin x + \cos x)(1 - \sin^2 x - \cos^2 x + \sin x \cos x)}{\sin x + \cos x}$$
$$= 1 - (\sin^2 x + \cos^2 x) + \sin x \cos x$$

We know that $\sin^2 x + \cos^2 x = 1$.
$$= 1 - 1 + \sin x \cos x$$
$$= \sin x \cos x$$

Hence proved.

12. Question

Prove the following identities

$$\left(\frac{1}{\sec^2 x - \cos^2 x} + \frac{1}{\csc^2 x - \sin^2 x}\right)\sin^2 x \cos^2 x = \frac{1 - \sin^2 x \cos^2 x}{2 + \sin^2 x \cos^2 x}$$

Answer

$$LHS = \left(\frac{1}{\sec^2 x - \cos^2 x} + \frac{1}{\csc^2 x - \sin^2 x}\right) \sin^2 x \cos^2 x$$

We know that $\csc \theta = \frac{1}{\sin \theta}$; $\sec \theta = \frac{1}{\cos \theta}$

$$= \left(\frac{1}{\frac{1}{\cos^2 x} - \cos^2 x} + \frac{1}{\frac{1}{\sin^2 x} - \sin^2 x}\right) \sin^2 x \cos^2 x$$
$$= \left(\frac{\cos^2 x}{1 - \cos^4 x} + \frac{\sin^2 x}{1 - \sin^4 x}\right) \sin^2 x \cos^2 x$$
$$= \left(\frac{\cos^2 x (1 - \sin^4 x) + \sin^2 x (1 - \cos^4 x)}{(1 - \cos^4 x)(1 - \sin^4 x)}\right) \sin^2 x \cos^2 x$$
$$= \left(\frac{\cos^2 x - \cos^2 x \sin^4 x + \sin^2 x - \sin^2 x \cos^4 x}{(1 + \sin^2 x)(1 - \sin^2 x)(1 + \cos^2 x)(1 - \cos^2 x)}\right) \sin^2 x \cos^2 x$$

<u>We know that $\sin^2 x + \cos^2 x = 1$.</u>

$$= \left(\frac{1 - \cos^2 x \sin^4 x - \sin^2 x \cos^4 x}{(1 + \sin^2 x) \cos^2 x (1 + \cos^2 x) \sin^2 x}\right) \sin^2 x \cos^2 x$$
$$= \left(\frac{1 - \cos^2 x \sin^2 x (\sin^2 x + \cos^2 x)}{(1 + \sin^2 x) (1 + \cos^2 x)}\right)$$
$$= \left(\frac{1 - \cos^2 x \sin^2 x}{2 + \sin^2 x \cos^2 x}\right)$$

Hence proved.

13. Question

Prove the following identities

 $(1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2 = \sec^2 \alpha \sec^2 \beta$

Answer

LHS =
$$(1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2$$

= $1 + \tan^2 \alpha \tan^2 \beta + 2 \tan \alpha \tan \beta + \tan^2 \alpha + \tan^2 \beta - 2 \tan \alpha \tan \beta$
= $1 + \tan^2 \alpha \tan^2 \beta + \tan^2 \alpha + \tan^2 \beta$
= $\tan^2 \alpha (\tan^2 \beta + 1) + 1 (1 + \tan^2 \beta)$
= $(1 + \tan^2 \beta) (1 + \tan^2 \alpha)$
We know that $1 + \tan^2 \theta = \sec^2 \theta$
= $\sec^2 \alpha \sec^2 \beta$

Hence proved.

14. Question

Prove the following identities

$$\frac{(1+\cot x + \tan x)(\sin x - \cos x)}{\sec^3 x - \csc^3 x} = \sin^2 x \cos^2 x$$

Answer

$$LHS = \frac{(1+\cot x+\tan x)(\sin x-\cos x)}{\sec^3 x-\csc^3 x}$$

We know that $\csc \theta = \frac{1}{\sin \theta}$; $\sec \theta = \frac{1}{\cos \theta}$; $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$
$$= \frac{(1+\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x})(\sin x-\cos x)}{\frac{1}{\cos^3 x}-\frac{1}{\sin^3 x}}$$
$$= \frac{(\sin x \cos x + \cos^2 x + \sin^2 x)(\sin x - \cos x)(\sin^2 x \cos^2 x)}{\sin^3 x - \cos^3 x}$$

We know that $a^3 - b^3 = (a - b)(a^2 + b^2 + ab)$
$$= \frac{(1+\sin x \cos x)(\sin x - \cos x)(\sin^2 x \cos^2 x)}{(\sin x - \cos x)(\sin^2 x \cos^2 x)}$$

$$=\frac{(1+\sin x \cos x)(\sin x - \cos x)(\sin^2 x \cos^2 x)}{(\sin x - \cos x)(1 + \sin x \cos x)}$$
$$= \sin^2 x \cos^{2x}$$

Hence proved.

15. Question

Prove the following identities

 $\frac{2\sin x \cos x - \cos x}{1 - \sin x + \sin^2 x - \cos^2 x} = \cot x$

Answer

 $LHS = \frac{2 \sin x \cos x - \cos x}{1 - \sin x + \sin^2 x - \cos^2 x}$

<u>We know that $1 - \cos^2 x = \sin^2 x$ </u>

$$= \frac{\cos x (2 \sin x - 1)}{\sin^2 x + \sin^2 x - \sin x}$$
$$= \frac{\cos x (2 \sin x - 1)}{2 \sin^2 x - \sin x}$$
$$= \frac{\cos x (2 \sin x - 1)}{\sin x (2 \sin x - 1)}$$
$$= \frac{\cos x}{\sin x}$$
$$= \cot x$$

= RHS

Hence proved.

16. Question

Prove the following identities

cosx (tanx + 2) (2 tanx + 1) = 2 secx + 5 sinx

Answer

LHS = cosx (tanx + 2) (2 tanx + 1)

$$= \cos x (2 \tan^2 x + 5 \tan x + 2)$$

$$= \cos x \left(\frac{2\sin^2 x}{\cos^2 x} + \frac{5\sin x}{\cos x} + 2 \right)$$

We know that
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\frac{2\sin^2 x + 5\sin x \cos x + 2\cos^2 x}{2\sin^2 x + 5\sin x \cos x}$$

$$=\frac{2+5\sin x\cos x}{\cos x}$$
$$=\frac{2}{\cos x}+\frac{5\sin x\cos x}{\cos x}$$

$$=\frac{1}{\cos x}+\frac{1}{\cos x}$$

= 2 secx + 5 sinx

Hence proved.

17. Question

If
$$a = \frac{2\sin x}{1 + \cos x + \sin x}$$
, then prove that $\frac{1 - \cos x + \sin x}{1 + \sin x}$ is also equal to a.

cosx

Answer

Given $a = \frac{2 \sin x}{1 + \cos x + \sin x}$

Rationalizing the denominator,

$$= \frac{2 \sin x}{1 + \cos x + \sin x} \times \frac{(1 + \sin x) - (1 + \sin x)^2 - (1 + \sin x) - (1 + \sin x)$$
$$= \frac{2 \sin x \left[(1 + \sin x) - \cos x \right]}{2 \sin x (1 + \sin x)}$$
$$= \frac{(1 + \sin x) - \cos x}{1 + \sin x}$$
$$\therefore a = \frac{1 - \cos x + \sin x}{1 + \sin x}$$

Hence proved.

18. Question

If $\sin x = \frac{a^2 - b^2}{a^2 + b^2}$, find the values of tanx, secx and cosecx

Answer

Given $\sin x = \frac{a^2 - b^2}{a^2 + b^2}$

We know that $\sin^2 x + \cos^2 x = 1 \rightarrow \cos^2 x = 1 - \sin^2 x$

$$\Rightarrow \cos^{2} x = 1 - \left(\frac{a^{2} - b^{2}}{a^{2} + b^{2}}\right)^{2}$$
$$= \frac{(a^{4} + b^{4} + 2a^{2}b^{2}) - (a^{4} + b^{4} - 2a^{2}b^{2})}{(a^{2} + b^{2})^{2}}$$
$$= \frac{4a^{2}b^{2}}{(a^{2} + b^{2})^{2}}$$
$$\Rightarrow \cos x = \frac{2ab}{(a^{2} + b^{2})^{2}}$$

$$\Rightarrow \tan x = \frac{\sin x}{\cos x} = \frac{\frac{a^2 - b^2}{a^2 + b^2}}{\frac{2ab}{(a^2 + b^2)^2}} = \frac{(a^2 - b^2)}{2ab}$$
$$\Rightarrow \sec x = \frac{1}{\cos x} = \frac{1}{\frac{2ab}{(a^2 + b^2)^2}} = \frac{(a^2 + b^2)^2}{2ab}$$
$$\Rightarrow \csc x = \frac{1}{\sin x} = \frac{1}{\frac{a^2 - b^2}{a^2 + b^2}} = \frac{a^2 + b^2}{a^2 - b^2}$$

19. Question

If
$$\tan x = \frac{b}{a}$$
, then find the value of $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$.

Answer

Given tanx = b/a

$$\Rightarrow \sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \sqrt{\frac{1+\frac{b}{a}}{1-\frac{b}{a}}} + \sqrt{\frac{1-\frac{b}{a}}{1+\frac{b}{a}}}$$
$$= \sqrt{\frac{1+\tan x}{1-\tan x}} + \sqrt{\frac{1-\tan x}{1+\tan x}}$$
$$= \frac{\tan x + 1 + 1 - \tan x}{\sqrt{1-\tan^2 x}}$$
$$= \frac{2}{\sqrt{1-\tan^2 x}}$$
$$= \frac{2}{\sqrt{1-\tan^2 x}}$$
$$= \frac{2\cos x}{\sqrt{\cos^2 x - \sin^2 x}}$$
$$\therefore \sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \frac{2\cos x}{\sqrt{\cos^2 x - \sin^2 x}}$$

20. Question

If
$$\tan x = \frac{a}{b}$$
, show that $\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}$.

Answer

Given tanx = a/b

$$LHS = \frac{a \sin x - b \cos x}{a \sin x + b \cos x}$$

Dividing by b cosx,

$$=\frac{\frac{\operatorname{atan} x}{b}-1}{\frac{\operatorname{atan} x}{b}+1}$$

Substituting value of tanx,

 $=\frac{a^2-b^2}{a^2+b^2}$

Get More Learning Materials Here : 📕

CLICK HERE

Hence proved.

21. Question

If $cosecx - sinx = a^3$, $secx - cosx = b^3$, then prove that $a^2 b^2 (a^2 + b^2) = 1$.

Answer

Given cosecx - sinx = a^3

<u>We know that cosecx = 1/sinx.</u>

$$\Rightarrow \frac{1}{\sin x} - \sin x = a^{3}$$
$$\Rightarrow \frac{1 - \sin^{2} x}{\sin x} = a^{3}$$

<u>We know that $1 - \sin^2 x = \cos^2 x$ </u>

$$\therefore a = \left(\frac{\cos^2 x}{\sin x}\right)^{\frac{1}{2}} \dots (1)$$

Also given secx – $\cos x = b^3$

<u>We know that secx = $1/\cos x$ </u>

$$\Rightarrow \frac{1}{\cos x} - \cos x = a^{3}$$
$$\Rightarrow \frac{1 - \cos^{2} x}{\cos x} = a^{3}$$

<u>We know that $1 - \cos^2 x = \sin^2 x$ </u>

$$\therefore a = \left(\frac{\sin^2 x}{\cos x}\right)^{\frac{1}{2}} \dots (2)$$

Consider LHS = a^2b^2 ($a^2 + b^2$)

$$= \left(\left(\frac{\cos^2 x}{\sin x} \right)^{\frac{1}{3}} \left(\frac{\sin^2 x}{\cos x} \right)^{\frac{1}{3}} \right) \left(\left(\left(\frac{\cos^2 x}{\sin x} \right)^{\frac{1}{3}} \right)^2 + \left(\left(\frac{\sin^2 x}{\cos x} \right)^{\frac{1}{3}} \right)^2 \right)$$

$$= (\sin x \cos x)^{\frac{2}{3}} \left(\frac{(\cos^2 x)^{\frac{2}{3}}}{(\sin x)^{\frac{2}{3}}} + \frac{(\sin^2 x)^{\frac{2}{3}}}{(\cos x)^{\frac{2}{3}}} \right)$$

$$= (\sin x \cos x)^{\frac{2}{3}} \left(\frac{(\cos^3 x)^{\frac{2}{3}} + (\sin^3 x)^{\frac{2}{3}}}{(\sin x)^{\frac{2}{3}}(\cos x)^{\frac{2}{3}}} \right)$$

$$= (\sin x \cos x)^{\frac{2}{3}} \left(\frac{(\cos^2 x + \sin^2 x)}{(\sin x \cos x)^{\frac{2}{3}}} \right)$$

$$= (\sin x \cos x)^{\frac{2}{3}} \left(\frac{\cos^2 x + \sin^2 x}{(\sin x \cos x)^{\frac{2}{3}}} \right)$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= RHS$$
Hence proved.
22. Question

If cotx(1 + sinx) = 4m and cotx(1 - sinx) = 4n, prove that $(m^2 - n^2)^2 = mn$.

Answer

Given $4m = \cot x (1 + \sin x)$ and $4n = \cot x (1 - \sin x)$

Multiplying both equations, we get

 \Rightarrow 16mn = cot²x (1 - sin²x)

We know that $1 - \sin^2 x = \cos^2 x$

 $\Rightarrow 16mn = cot^2x cos^2x$

$$\Rightarrow mn = \frac{\cos^4 x}{16 \sin^2 x} \dots (1)$$

Squaring the given equations and then subtracting,

⇒
$$16m^2 = \cot^2 x (1 + \sin x)^2$$
 and $16n^2 = \cot^2 x (1 - \sin x)^2$
⇒ $16m^2 - 16n^2 = \cot^2 x (4 \sin x)$
∴ $m^2 - n^2 = \frac{\cot^2 x \sin x}{4}$

Squaring both sides,

$$\Rightarrow (m^{2} - n^{2})^{2} = \frac{\cot^{4} x \sin^{2} x}{16}$$
$$\Rightarrow (m^{2} - n^{2})^{2} = \frac{\cos^{4} x \sin^{2} x}{16 \sin^{2} x} \dots (2)$$

From (1) and (2),

 \Rightarrow (m² - n²) = mn

Hence proved.

23. Question

If sinx + cosx = m, then prove that sin⁶x + cos⁶x =
$$\frac{4-3(m^2-1)^2}{4}$$
, where m² ≤ 2

Answer

Given sinx + cosx = m

We have to prove that $\sin^6 x + \cos^6 x = \frac{4-3(m^2-1)^2}{4}$

Proof:

```
LHS = \sin^{6}x + \cos^{6}x

= (\sin^{2}x)^{3} + (\cos^{2}x)^{3}

<u>We know that a^{3} + b^{3} = (a + b)(a^{2} + b^{2} - ab)</u>

= (\sin^{2}x + \cos^{2}x)^{3} - 3\sin^{2}x \cos^{2}x(\sin^{2}x + \cos^{2}x)

= 1 - 3\sin^{2}x \cos^{2}x

RHS = \frac{4 - 3(m^{2} - 1)^{2}}{4}

= \frac{4 - 3((\sin x + \cos x)^{2} - 1)^{2}}{4}
```


$$= \frac{4 - 3(\sin^2 x + \cos^2 x + 2\sin x \cos x - 1)^2}{4}$$

= $\frac{4 - 3(\sin^2 x - (1 - \cos^2 x) + 2\sin x \cos x)^2}{4}$
= $\frac{4 - 3 \times 4 \sin^2 x \cos^2 x}{4}$
= $1 - 3 \sin^2 x \cos^2 x$
LHS = RHS
Hence proved.

24. Question

If a = secx - tanx and b = cosecx + cotx, then show that ab + a - b + 1 = 0.

Answer

Given a = secx - tanx and b = cosecx + cotx

$$a = \frac{1 - \sin x}{\cos x}$$
 and $b = \frac{1 + \cos x}{\sin x}$

LHS = ab + a - b + 1

$$= \left(\frac{1-\sin x}{\cos x}\right) \left(\frac{1+\cos x}{\sin x}\right) + \frac{1-\sin x}{\cos x} - \frac{1+\cos x}{\sin x} + 1$$
$$= \frac{1-\sin x + \cos x - \sin x \cos x + \sin x - \sin^2 x - \cos x - \cos^2 x + \sin x \cos x}{\sin x \cos x}$$
$$= \frac{1-\sin^2 x - \cos^2 x}{\sin x \cos x}$$

$$= 0 = RHS$$

Hence proved.

25. Question

Prove that :

$$\left| \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} \right| = -\frac{2}{\cos x}, \text{ where } \frac{\pi}{2} < x < \pi$$

Answer

$$LHS = \left| \sqrt{\frac{1-\sin x}{1+\sin x}} + \sqrt{\frac{1+\sin x}{1-\sin x}} \right|$$
$$= \left| \sqrt{\frac{1-\sin x \left(1-\sin x\right)}{1+\sin x \left(1-\sin x\right)}} + \sqrt{\frac{1+\sin x \left(1+\sin x\right)}{1-\sin x \left(1+\sin x\right)}} \right|$$
$$= \left| \sqrt{\frac{\left(1-\sin x\right)^2}{\left(1-\sin^2 x\right)}} + \sqrt{\frac{\left(1+\sin x\right)^2}{1-\sin^2 x}} \right|$$
$$= \left| \frac{1-\sin x + 1 + \sin x}{\cos x} \right|$$
$$= \left| \frac{2}{\cos x} \right|$$

Get More Learning Materials Here : 📕

CLICK HERE

 $= -\frac{2}{\cos x} [:: \pi/2 < x < \pi \text{ and in second quadrant, cosx is negative}]$ = RHS

Hence proved.

26 A. Question

If $T_n = sin^n x + cos^n x$, prove that

$$\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}$$

Answer

```
Given T_n = sin^n x + cos^n x
LHS = \frac{T_{g} - T_{g}}{T_{g}}
=\frac{(\sin^3 x + \cos^3 x) - (\sin^5 x + \cos^5 x)}{\sin x + \cos x}
=\frac{\sin^3 x - \sin^5 x + \cos^3 x - \cos^5 x}{\sin x + \cos x}
=\frac{\sin^{3} x (1 - \sin^{2} x) + \cos^{3} x (1 - \cos^{2} x)}{\sin x + \cos x}
=\frac{\sin^3 x \cos^2 x + \cos^3 x \sin^2 x}{\sin^2 x}
              \sin x + \cos x
=\frac{\sin^2 x \cos^2 x (\sin x + \cos x)}{\sin x + \cos x}
= \sin^2 x \cos^2 x
\mathsf{RHS} = \frac{\mathsf{T_{5}} - \mathsf{T_{7}}}{\mathsf{T_{7}}}
=\frac{(\sin^{5} x + \cos^{5} x) - (\sin^{7} x + \cos^{7} x)}{\sin^{3} x + \cos^{3} x}
=\frac{\sin^{5} x - \sin^{7} x + \cos^{5} x - \cos^{7} x}{\sin^{3} x + \cos^{3} x}
=\frac{\sin^{5} x (1-\sin^{2} x)+\cos^{5} x (1-\cos^{2} x)}{\sin x+\cos x}
=\frac{\sin^5 x \cos^2 x + \cos^5 x \sin^2 x}{1 + \cos^5 x \sin^2 x}
              sin x + cos x
=\frac{\sin^{2} x \cos^{2} x (\sin^{3} x + \cos^{3} x)}{\sin^{3} x + \cos^{3} x}
= \sin^2 x \cos^2 x
LHS = RHS
Hence proved.
26 B. Question
If T_n = sin^n x + cos^n x, prove that
2 T_6 - 3 T_4 + 1 = 0
```

Get More Learning Materials Here :

CLICK HERE

Given $T_n = \sin^n x + \cos^n x$ LHS = $2T_6 - 3T_4 + 1$ = 2 (sin⁶x + cos⁶x) - 3 (sin⁴x + cos⁴x) + 1 = 2 (sin²x + cos²x) (sin⁴x + cos⁴x - cos²x sin²x) - 3 (sin⁴x + cos⁴x) + 1 <u>We know that sin²x + cos²x = 1</u>. = 2 (1) (sin⁴x + cos⁴x - cos²x sin²x) - 3 (sin⁴x + cos⁴x) + 1 = 2sin⁴x + 2cos⁴x - 2sin²x cos²x - 3sin⁴x - 3cos⁴x + 1 = - (sin⁴x + cos⁴x) - 2sin²x cos²x + 1 = - (sin²x + cos²x)² + 1 = - 1 + 1 = 0 = RHS Hence proved.

26 C. Question

If $T_n = sin^n x + cos^n x$, prove that

 $6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0$

Answer

Given $T_n = sin^n x + cos^n x$

 $LHS = 6T_{10} - 15 T_8 + 10T_6 - 1$

 $= 6 (\sin^{10}x + \cos^{10}x) - 15 (\sin^8x + \cos^8x) + 10 (\sin^6x + \cos^6x) - 1$

 $= 6 (\sin^{6}x + \cos^{6}x) (\sin^{4}x + \cos^{4}x) - \cos^{4}x \sin^{4}x (\sin^{2}x + \cos^{2}x) - 15 (\sin^{6}x + \cos^{6}x) (\sin^{2}x + \cos^{2}x) - \cos^{2}x \sin^{2}x (\sin^{4}x + \cos^{4}x) + 10 (\sin^{2}x + \cos^{2}x) (\sin^{4}x + \cos^{4}x - \cos^{2}x \sin^{2}x) - 1$

<u>We know that $sin^2x + cos^2x = 1$.</u>

$$= 6 [(1 - 3 \sin^{2} x \cos^{2} x) (1 - 2 \sin^{2} x \cos^{2} x) - \sin^{4} x \cos^{4} x] - 15 [(1 - 3 \sin^{2} x \cos^{2} x) - \sin^{2} x \cos^{2} x (1 - 2 \sin^{2} x \cos^{2} x)] + 10 (1 - 3 \sin^{2} x \cos^{2} x) - 1$$

$$= 6 (1 - 5 \sin^{2} x \cos^{2} x + 5 \sin^{4} x \cos^{4} x) - 15 (1 - 4 \sin^{2} x \cos^{2} x + 2 \sin^{4} x \cos^{4} x) + 10 (1 - 3 \sin^{2} x \cos^{2} x) - 1$$

$$= 6 - 30 \sin^{2} x \cos^{2} x + 30 \sin^{4} x \cos^{4} x - 15 + 60 \sin^{2} x \cos^{2} x - 30 \sin^{4} x \cos^{4} x + 10 - 30 \sin^{2} x \cos^{2} x - 1$$

$$= 6 - 15 + 10 - 1$$

$$= 0$$

$$= RHS$$

Hence proved.

Exercise 5.2

1 A. Question

Find the values of the other five trigonometric functions in each of the following:

$$\text{cot }_{X} = \frac{12}{5}, x \text{ in quadrant III}$$

Given $\cot x = 12/5$ and x is in quadrant III

In third quadrant, tanx and cotx are positive and sinx, cosx and secx & cosecx are negative.

We know that
$$\frac{\tan x = \frac{1}{\cot x}; \csc x = \sqrt{1 + \cot^2 x}; \sin x = \frac{1}{\csc x}; \cos x = \sqrt{1 - \sin^2 x} \text{ and } \sec x = \frac{1}{\cos x}$$

 $\Rightarrow \tan x = \frac{1}{\frac{12}{5}} = \frac{5}{12}$
 $\Rightarrow \csc x = -\sqrt{1 + (\frac{12}{5})^2}$
 $= -\sqrt{\frac{25 + 144}{25}}$
 $= -\sqrt{\frac{169}{25}}$
 $= -\sqrt{\frac{169}{25}}$
 $= -\frac{13}{5}$
 $\Rightarrow \sin x = \frac{1}{-13/5} = -\frac{5}{13}$
 $\Rightarrow \cos x = -\sqrt{1 - (\frac{-5}{13})^2}$
 $= -\sqrt{\frac{169 - 25}{169}}$
 $= -\sqrt{\frac{144}{169}}$
 $= -\frac{12}{13}$
 $\Rightarrow \sec x = \frac{1}{-\frac{112}{13}} = -\frac{13}{12}$

1 B. Question

Find the values of the other five trigonometric functions in each of the following:

$$\cos x = -\frac{1}{2}, x$$
 in quadrant II

Answer

Given $\cot x = -1/2$ and x is in quadrant II

In second quadrant, sinx and cosecx are positive and tanx, cotx and cosx & secx are negative.

Get More Learning Materials Here : 💶

We know that $\sin x = \sqrt{1 - \cos^2 x}$; $\tan x = \frac{\sin x}{\cos x}$; $\cot x = \frac{1}{\tan x}$; $\operatorname{cosec} x = \frac{1}{\sin x}$ and $\operatorname{sec} x = \frac{1}{\cos x}$

$$\Rightarrow \sin x = \sqrt{1 - \left(\frac{-1}{2}\right)^2}$$
$$= \sqrt{\frac{4 - 1}{4}}$$
$$= \sqrt{\frac{3}{4}}$$
$$= \frac{\sqrt{3}}{2}$$
$$\Rightarrow \tan x = \frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}} = -\sqrt{3}$$
$$\Rightarrow \cot x = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}}$$
$$\Rightarrow \csc x = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$$
$$\Rightarrow \sec x = \frac{1}{\frac{-1}{2}} = -2$$

1 C. Question

Find the values of the other five trigonometric functions in each of the following:

tan
$$\mathbf{x} = \frac{3}{4}, \mathbf{x}$$
 in quadrant III

Answer

Given tanx = 3/4 and x is in quadrant III

In third quadrant, tanx and cotx are positive and sinx, cosx, secx and cosecx are negative.

We know that
$$\frac{\sin x = \sqrt{1 - \cos^2 x}}{-\sqrt{1 + \tan^2 x}}$$
; $\tan x = \frac{\sin x}{\cos x}$; $\cot x = \frac{1}{\tan x}$; $\operatorname{cosec} x = \frac{1}{\sin x}$ and $\operatorname{secx} = \frac{1}{\sqrt{1 + \tan^2 x}}$
 $\Rightarrow \cot x = \frac{1}{\frac{3}{4}} = \frac{4}{3}$
 $\Rightarrow \operatorname{secx} = -\sqrt{1 + \left(\frac{3}{4}\right)^2}$
 $= -\sqrt{\frac{16 + 9}{16}}$
 $= -\sqrt{\frac{25}{16}}$

CLICK HERE

>>

R www.studentbro.in

1 D. Question

Find the values of the other five trigonometric functions in each of the following:

sin
$$x = \frac{3}{5}, x$$
 in quatrant I

Answer

Given sinx = 3/5 and x is in first quadrant.

In first quadrant, all trigonometric ratios are positive.

We know that
$$\frac{\tan x}{\frac{1}{\cos x}} = \frac{\sin x}{\cos x}$$
; $\csc x = \frac{1}{\sin x}$; $\sin x = \frac{1}{\csc x}$; $\cos x = \sqrt{1 - \sin^2 x}$ and $\sec x = \frac{3}{\cos x} = \cos x = \sqrt{1 - \left(\frac{-3}{5}\right)^2}$
 $= \sqrt{\frac{25 - 9}{25}}$
 $= \sqrt{\frac{16}{25}}$
 $= \frac{4}{5}$
 $\Rightarrow \tan x = \frac{3}{\frac{5}{5}} = \frac{3}{4}$
 $\Rightarrow \cot x = \frac{1}{\frac{3}{4}} = \frac{4}{3}$

CLICK HERE

$$\Rightarrow \operatorname{cosecx} = \frac{1}{\frac{3}{5}} = \frac{5}{3}$$
$$\Rightarrow \operatorname{secx} = \frac{1}{\frac{4}{5}} = \frac{5}{4}$$

2. Question

If sin $x = \frac{12}{13}$ and lies in the second quadrant, find the value of secx + tanx.

Answer

Given sinx = 12/13 and *x* lies in the second quadrant.

In second quadrant, sinx and cosecx are positive and all other ratios are negative.

We know that
$$\cos x = \sqrt{1 - \sin^2 x}$$

$$\cos x = -\sqrt{1 - \left(\frac{12}{13}\right)^2}$$
$$= -\sqrt{1 - \frac{144}{169}}$$
$$= -\sqrt{\frac{(169 - 144)}{169}}$$
$$= -\sqrt{\frac{25}{169}}$$
$$= -\frac{5}{13}$$

<u>We know that tanx = sinx / cosx and secx = 1/cosx</u></u>

$$\Rightarrow \tan x = \frac{\frac{12}{13}}{\frac{-5}{13}} = -\frac{12}{5}$$

$$\Rightarrow \sec x = \frac{1}{\frac{-5}{13}} = -\frac{13}{5}$$

$$\therefore \sec x + \tan x = -\frac{12}{5} + \left(-\frac{13}{5}\right)$$

$$= \frac{-12 - 13}{5}$$

$$= -\frac{25}{5} = -5$$

3. Question

If sin
$$x = \frac{3}{5}$$
, tan $y = \frac{1}{2}$ and $\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2}$, find the value of 8 tan $x = \sqrt{5}$ sec $y < \frac{3\pi}{2}$.

Answer

Given sinx = 3/5, tan y = 1/2 and $\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2}$

Thus, x is in second quadrant and y is in third quadrant.

Get More Learning Materials Here :

Regional www.studentbro.in

In second quadrant, cosx and tanx are negative.

In third quadrant, sec y is negative.

We know that $\cos x = -\sqrt{1 - \sin^2 x}$ and $\tan x = \frac{\sin x}{\cos x}$ $\Rightarrow \cos x = -\sqrt{1 - \left(\frac{3}{5}\right)^2}$ $= -\sqrt{1 - \frac{9}{25}}$ $= -\sqrt{\frac{25 - 9}{25}}$

$$= -\sqrt{\frac{16}{25}}$$
$$= -\frac{4}{5}$$

$$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{-4}{5}} = \frac{-3}{5}$$

We know that sec $y = -\sqrt{1 + \tan^2 y}$

$$\Rightarrow \sec y = -\sqrt{1 + \left(\frac{1}{2}\right)^2}$$
$$= -\sqrt{1 + \left(\frac{1}{4}\right)}$$
$$= -\sqrt{\frac{4+1}{4}}$$
$$= -\sqrt{\frac{5}{4}}$$
$$\Rightarrow 8\tan x - \sqrt{5}\sec y = 8\left(-\frac{3}{4}\right) - \sqrt{5}\left(-\frac{1}{4}\right)$$
$$= -6 + \frac{5}{2}$$
$$= -\frac{7}{2}$$

4. Question

If sinx + cosx = 0 and x lies in the fourth quadrant, find sinx and cosx.

 $\frac{\sqrt{5}}{2}$

Answer

Given sinx + cosx = 0 and *x* lies in fourth quadrant.

⇒sinx = -cosx

$$\Rightarrow \frac{\sin x}{\cos x} = -1$$

∴ tanx = -1

In fourth quadrant, cosx and secx are positive and all other ratios are negative.

We know that $\sec x = \sqrt{1 + \tan^2 x}$; $\cos x = \frac{1}{\sec x}$; $\sin x = -\sqrt{1 - \cos^2 x}$

$$\Rightarrow \sec x = \sqrt{1 + (-1)^2} = \sqrt{2}$$
$$\Rightarrow \cos x = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \sin x = -\sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^2}$$
$$= -\sqrt{1 - \frac{1}{2}}$$
$$= -\sqrt{\frac{2 - 1}{2}}$$
$$= -\sqrt{\frac{1}{2}}$$
$$= -\sqrt{\frac{1}{2}}$$
$$\Rightarrow \sin x = -\frac{1}{\sqrt{2}} \text{ and } \cos x = \frac{1}{\sqrt{2}}$$

$$\therefore \sin x = -\frac{1}{\sqrt{2}} \text{ and } \cos x = \frac{1}{\sqrt{2}}$$

5. Question

If $\cos x = -\frac{3}{5}$ and $\pi < x < \frac{3\pi}{2}$, find the values of other five trigonometric functions and hence evaluate $\frac{\csc x + \cot x}{\sec x - \tan x}$.

CLICK HERE

>>>

🕀 www.studentbro.in

Answer

Given cosx= -3/5 and π <x < 3 $\pi/2$

It is in the third quadrant. Here, tanx and cotx are positive and all other rations are negative.

We know that $\sin x = -\sqrt{1 - \cos^2 x}$; $\tan x \frac{\sin x}{\cos x}$; $\cot x = \frac{1}{\tan x}$; $\sec x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$

$$\Rightarrow \sin x = -\sqrt{1 - \left(\frac{-3}{5}\right)^2}$$
$$= -\sqrt{1 - \frac{9}{25}}$$
$$= -\sqrt{\frac{25 - 9}{25}}$$

$$= -\sqrt{\frac{16}{25}}$$

$$= -\frac{4}{5}$$

$$\Rightarrow \tan x = \frac{\frac{-4}{5}}{\frac{-8}{5}} = \frac{4}{3}$$

$$\Rightarrow \cot x = \frac{1}{\frac{4}{5}} = \frac{3}{4}$$

$$\Rightarrow \sec x = \frac{1}{\frac{-2}{5}} = -\frac{5}{3}$$

$$\Rightarrow \csc x = \frac{1}{\frac{-4}{5}} = -\frac{5}{4}$$

$$\therefore \frac{\csc \theta + \cot \theta}{\sec \theta - \tan \theta} = \frac{\frac{-5}{4} + \frac{3}{4}}{\frac{-5}{3} - \frac{4}{3}}$$

$$= \frac{\frac{-5+3}{4}}{\frac{-5-4}{3}}$$

$$= \frac{\frac{-2}{4}}{\frac{-9}{3}}$$

$$= \frac{\frac{-1}{2}}{-3}$$

$$= \frac{1}{6}$$

Exercise 5.3

1 A. Question

Find the values of the following trigonometric ratios:

$$\sin\frac{5\pi}{3}$$

Answer

Given $\sin \frac{5\pi}{3}$ $\Rightarrow \frac{5\pi}{3} = \left(\frac{5\pi}{3} \times 180\right)^\circ = 300^\circ$ $= (90^\circ \times 3 + 30^\circ)$

 300° lies in fourth quadrant in which sine function is negative.

$$\therefore \sin\left(\frac{5\pi}{3}\right) = \sin(300^\circ)$$
$$= \sin(90^\circ \times 3 + 30^\circ)$$
$$= -\cos 30^\circ$$
$$= \frac{-\sqrt{3}}{2}$$

1 B. Question

Find the values of the following trigonometric ratios:

sin 17 π

Answer

Given sin 17π

⇒ sin 17π =sin 3060°

⇒ 3060° =90° × 34 + 0°

3060° is in negative direction of x-axis i.e. on boundary line of II and III quadrants.

$$\therefore \sin (3060^{\circ}) = \sin(90^{\circ} \times 34 + 0^{\circ})$$

= -sin 0°

= 0

1 C. Question

Find the values of the following trigonometric ratios:

$$\tan \frac{11\pi}{6}$$

Answer

Given $tan(11\pi/6)$

$$\Rightarrow \frac{11\pi}{6} = \left(\frac{11}{6} \times 180^\circ\right)$$

=330°

330° lies in fourth quadrant in which tangent function is negative.

$$\therefore \left(\frac{11\pi}{6}\right) = \tan(330^\circ)$$
$$= \tan(90^\circ \times 3+60^\circ)$$

=-cot 60°

$$=-\frac{1}{\sqrt{3}}$$

1 D. Question

Find the values of the following trigonometric ratios:

$$\cos\left(-\frac{25\pi}{4}\right)$$

Answer

Given $\cos\left(\frac{-25\pi}{4}\right)$ $\Rightarrow \cos\left(\frac{-25\pi}{4}\right) = \cos(-1125^{\circ})$ $\Rightarrow \cos(-1125^{\circ}) = \cos(1125^{\circ})$ $= \cos(90^{\circ} \times 12 + 45^{\circ})$ 1125° lies in first quadrant in which cosine function is positive.

CLICK HERE

>>

Regional www.studentbro.in

$$\therefore \cos(1125^{\circ}) = \cos(90^{\circ} \times 12 + 45^{\circ})$$

= cos (45°)

 $= 1/\sqrt{2}$

1 E. Question

Find the values of the following trigonometric ratios:

 $\tan \frac{7\pi}{4}$

Answer

Given tan $7\pi/4$

 $\Rightarrow \tan \frac{7\pi}{4} = \tan 315^{\circ}$ $\Rightarrow 315^{\circ} = (90^{\circ} \times 3 + 45^{\circ})$

315° lies in fourth quadrant in which tangent function is negative.

 \therefore tan (315°) = tan (90° × 3 + 45°)

=-cot 45°

=-1

1 F. Question

Find the values of the following trigonometric ratios:

 $\sin\!\frac{17\,\pi}{6}$

Answer

Given $\sin \frac{17\pi}{6}$ $\Rightarrow \sin \frac{17\pi}{6} = \sin 510^{\circ}$

$$\Rightarrow 510^{\circ} = (90^{\circ} \times 5 + 60^{\circ})$$

510° lies in second quadrant in which sine function is positive.

∴sin (510°) = sin (90° × 5 + 60°)

= cos (60°)

= 1/2

1 G. Question

Find the values of the following trigonometric ratios:

 $\cos\frac{19\pi}{6}$

Answer

Given $\cos \frac{19\pi}{6}$ $\Rightarrow \cos \frac{19\pi}{6} = \cos 570^{\circ}$ $\Rightarrow 570^{\circ} = (90^{\circ} \times 6 + 30^{\circ})$

570° lies in third quadrant in which cosine function is negative.

Get More Learning Materials Here :

CLICK HERE

 $\therefore \cos (570^{\circ}) = \cos (90^{\circ} \times 6 + 30^{\circ})$

= -cos (30°)

$$=-\frac{\sqrt{3}}{2}$$

1 H. Question

Find the values of the following trigonometric ratios:

$$\sin\left(-\frac{11\pi}{6}\right)$$

Answer

Given $\sin\left(\frac{-11\pi}{6}\right)$ $\Rightarrow \sin\left(\frac{-11\pi}{6}\right) = \sin\left(-330^{\circ}\right)$ $\Rightarrow -\sin 330^{\circ} = -\sin (90^{\circ} \times 3 + 60^{\circ})$ 330° lies in the fourth quadrant in which the sine function is negative. $\therefore \sin (-330)^{\circ} = -\sin (90^{\circ} \times 3 + 60^{\circ})$ $= -(-\cos 60^{\circ})$

- = (-1/2)
- = 1/2

1 I. Question

Find the values of the following trigonometric ratios:

$$\operatorname{cosec}\left(-\frac{20\pi}{3}\right)$$

Answer

```
Given \operatorname{cosec}\left(-\frac{20\pi}{3}\right)

\Rightarrow \operatorname{cosec}\left(-\frac{20\pi}{3}\right) = \operatorname{cosec}(-1200^\circ)

\Rightarrow \operatorname{cosec}(-1200^\circ) = \operatorname{cosec}(1200^\circ)
```

=cosec (90° × 13 + 30)

1200° lies in second quadrant in which cosec function is positive.

= -sec 30°

$$=-\frac{2}{\sqrt{3}}$$

1 J. Question

Find the values of the following trigonometric ratios:

$$\tan\left(-\frac{13\pi}{4}\right)$$

Given
$$\tan\left(\frac{-13\pi}{4}\right)$$

 $\Rightarrow \tan\left(\frac{-13\pi}{4}\right) = \tan(-585^{\circ})$
 $\Rightarrow -\tan 585^{\circ} = -\tan (90^{\circ} \times 6 + 45^{\circ}))$
585° lies in the third quadrant in which the tangent function is positive.
 $\therefore \tan (-585)^{\circ} = -\tan (90^{\circ} \times 6 + 45^{\circ}))$
 $= -(\tan 45^{\circ})$

= -1

1 K. Question

Find the values of the following trigonometric ratios:

$$cos \frac{19\pi}{4}$$

Answer

```
Given \cos \frac{19\pi}{4}

\Rightarrow \cos \frac{19\pi}{4} = \cos 855^{\circ}

\Rightarrow 855^{\circ} = 90^{\circ} \times 9 + 45^{\circ}
```

855° lies in the second quadrant in which the cosine function is negative.

 $\therefore \cos 855^\circ = \cos (90^\circ \times 9 + 45^\circ)$

= -sin 45°

$$=\frac{-1}{\sqrt{2}}$$

1 L. Question

Find the values of the following trigonometric ratios:

$$\sin\frac{41\pi}{4}$$

Answer

```
Given \sin \frac{41\pi}{4}

\Rightarrow \sin \frac{41\pi}{4} = \sin 1845^{\circ}

\Rightarrow \sin 1845^{\circ} = 90^{\circ} \times 20 + 45^{\circ}

1845° lies in the first quadrant in which the sine function is positive.

\therefore \sin 1845^{\circ} = \sin (90^{\circ} \times 20 + 45^{\circ})

= \sin 45^{\circ}

= \frac{1}{\sqrt{2}}

1 M. Question
```


Find the values of the following trigonometric ratios:

$$\cos\frac{39\pi}{4}$$

Answer

Given $\cos \frac{39\pi}{4}$

 $\Rightarrow \cos\frac{39\pi}{4} = \cos 1755^{\circ}$

$$\Rightarrow 1755^\circ = 90^\circ \times 19 + 45^\circ$$

1755° lies in the fourth quadrant in which the cosine function is positive.

 $\therefore \cos 1755^{\circ} = \cos (90^{\circ} \times 19 + 45^{\circ})$

= sin 45°

 $=\frac{1}{\sqrt{2}}$

1 N. Question

Find the values of the following trigonometric ratios:

$$sin \frac{151\pi}{6}$$

Answer

Given $\frac{151\pi}{6}$

 $\Rightarrow \sin \frac{151\pi}{6} = \sin 4530^{\circ}$

⇒ sin 4530° = 90° × 50 + 30°

4530° lies in the third quadrant in which the sine function is negative.

 $\therefore \sin 4530^{\circ} = \sin (90^{\circ} \times 50 + 30^{\circ})$

= - sin 30°

= -1/2

2 A. Question

prove that :

 $\tan 225^{\circ} \cot 405^{\circ} + \tan 765^{\circ} \cot 675^{\circ} = 0$

Answer

```
LHS = tan 225° cot 405° + tan 765° cot 675°

= tan (90° \times 2 + 45°) cot (90° \times 4 + 45°) + tan (90° \times 8 + 45°) cot (90° \times 7 + 45°)

<u>We know that when n is odd, cot \rightarrow tan.</u>

= tan 45° cot 45° + tan 45° [-tan 45°]

= tan 45° cot 45° - tan 45° tan 45°

= 1 \times 1 - 1 \times 1

= 1 - 1

= 0
```


Hence proved.

2 B. Question

prove that :

 $\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}$

Answer

 $LHS = \sin \frac{8\pi}{3} \cos \frac{23\pi}{6} + \cos \frac{13\pi}{3} \sin \frac{35\pi}{6}$ = sin 480° cos 690° + cos 780° sin 1050° = sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°) We know that when n is odd, sin \rightarrow cos and cos \rightarrow sin.

 $= \cos 30^{\circ} \sin 60^{\circ} + \cos 60^{\circ} [-\cos 60^{\circ}]$

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}$$
$$= 3/4 - 1/4$$
$$= 2/4$$
$$= 1/2$$

Hence proved.

2 C. Question

prove that :

 $\cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ = \frac{1}{2}$

Answer

LHS = $\cos 24^{\circ} + \cos 55^{\circ} + \cos 125^{\circ} + \cos 204^{\circ} + \cos 300^{\circ}$ = $\cos 24^{\circ} + \cos (90^{\circ} \times 1 - 35^{\circ}) + \cos (90^{\circ} \times 1 + 35^{\circ}) + \cos (90^{\circ} \times 2 + 24^{\circ}) + \cos (90^{\circ} \times 3 + 30^{\circ})$ We know that when n is odd, $\cos \rightarrow \sin$. = $\cos 24^{\circ} + \sin 35^{\circ} - \sin 35^{\circ} - \cos 24^{\circ} + \sin 30^{\circ}$ = 0 + 0 + 1/2= 1/2= 1/2= RHS Hence proved. 2 D. Question prove that : tan (-225^{\circ}) cot (-405^{\circ}) - tan (-765^{\circ}) cot (675^{\circ}) = 0 Answer

Get More Learning Materials Here : 📕

LHS = $tan (-225^{\circ}) \cot (-405^{\circ}) - tan (-765^{\circ}) \cot (675^{\circ})$

We know that tan(-x) = -tan(x) and cot(-x) = -cot(x). = [-tan (225°)] [-cot (405°)] - [-tan (765°)] cot (675°) = tan (225°) cot (405°) + tan (765°) cot (675°) $= \tan (90^{\circ} \times 2 + 45^{\circ}) \cot (90^{\circ} \times 4 + 45^{\circ}) + \tan (90^{\circ} \times 8 + 45^{\circ}) \cot (90^{\circ} \times 7 + 45^{\circ})$ $= \tan 45^{\circ} \cot 45^{\circ} + \tan 45^{\circ} [-\tan 45^{\circ}]$ $= 1 \times 1 + 1 \times (-1)$ = 1 - 1= 0 = RHSHence proved. 2 E. Question prove that : $\cos 570^{\circ} \sin 510^{\circ} + \sin (-330^{\circ}) \cos (-390^{\circ}) = 0$ Answer LHS = $\cos 570^{\circ} \sin 510^{\circ} + \sin (-330^{\circ}) \cos (-390^{\circ})$ We know that sin(-x) = -sin(x) and cos(-x) = +cos(x). $= \cos 570^{\circ} \sin 510^{\circ} + [-\sin (330^{\circ})] \cos (390^{\circ})$ $= \cos 570^{\circ} \sin 510^{\circ} - \sin (330^{\circ}) \cos (390^{\circ})$ $= \cos (90^{\circ} \times 6 + 30^{\circ}) \sin (90^{\circ} \times 5 + 60^{\circ}) - \sin (90^{\circ} \times 3 + 60^{\circ}) \cos (90^{\circ} \times 4 + 30^{\circ})$ We know that cos is negative at 90° + θ i.e. in Q₂ and when n is odd, sin \rightarrow cos and cos \rightarrow sin. = -cos 30° cos 60° - [-cos 60°] cos 30° $= -\cos 30^{\circ} \cos 60^{\circ} + \cos 60^{\circ} \cos 30^{\circ}$ = 0= RHSHence proved. 2 F. Question prove that : $\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4}\csc^2\frac{\pi}{4} + 4\cos^2\frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}$ Answer 11π <u>а 17т</u>

LHS =
$$\tan \frac{4\pi}{3} - 2\sin \frac{4\pi}{6} - \frac{3}{4}\csc^2 \frac{\pi}{4} + 4\cos^2 \frac{4\pi}{6}$$

= $\tan \frac{11 \times 180^{\circ}}{3} - 2\sin \frac{4 \times 180^{\circ}}{6} - \frac{3}{4}\csc^2 \frac{180^{\circ}}{4} + 4\cos^2 \frac{17 \times 180^{\circ}}{6}$
= $\tan 660^{\circ} - 2\sin 120^{\circ} - \frac{3}{4}[\csc 45]^2 + 4[\cos 510^{\circ}]^2$
= $\tan (90^{\circ} \times 7 + 30^{\circ}) - 2\sin (90^{\circ} \times 1 + 30^{\circ}) - 3/4[\csc 45^{\circ}]^2 + 4[\cos (90^{\circ} \times 5 + 60^{\circ})]^2$
We know that tan and cos is negative at 90^{\circ} + 0 i.e. in Q₂ and when n is odd, tan → cot, sin → cos and cos → sin.

Get More Learning Materials Here : 📕

CLICK HERE

= $[-\cot 30^{\circ}] - 2 \cos 30^{\circ} - 3/4 [cosec 45^{\circ}]^{2} + [-\sin 60^{\circ}]^{2}$

= - $\cot 30^\circ$ - 2 $\cos 30^\circ$ - 3/4 [$\csc 45^\circ$]² + [$\sin 60^\circ$]²

$$= -\sqrt{3} - \frac{2\sqrt{3}}{2} - \frac{3}{4} \left[\sqrt{2}\right]^2 + 4 \left[\frac{\sqrt{3}}{2}\right]^2$$
$$= -\sqrt{3} - \sqrt{3} - \frac{6}{4} + \frac{12}{4}$$
$$= \frac{3 - 4\sqrt{3}}{2}$$

= RHS

Hence proved.

2 G. Question

prove that :

$$3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1$$

Answer

$$LHS = 3 \sin \frac{\pi}{6} \sec \frac{\pi}{3} - 4 \sin \frac{5\pi}{6} \cot \frac{\pi}{4}$$

= $3 \sin \frac{180^{\circ}}{6} \sec \frac{180^{\circ}}{3} - 4 \sin \frac{5(180^{\circ})}{6} \cot \frac{180^{\circ}}{4}$
= $3 \sin 30^{\circ} \sec 60^{\circ} - 4 \sin 150^{\circ} \cot 45^{\circ}$
= $3 \sin 30^{\circ} \sec 60^{\circ} - 4 \sin (90^{\circ} \times 1 + 60^{\circ}) \cot 45^{\circ}$
We know that when n is odd, $\sin \rightarrow \cos$
= $3 \sin 30^{\circ} \sec 60^{\circ} - 4 \cos 60^{\circ} \cot 45^{\circ}$
= $3 (1/2) (2) - 4 (1/2) (1)$
= $3 - 2$
= 1

= RHS

Hence proved.

3 A. Question

Prove that :

$$\frac{\cos(2\pi + x)\csc(2\pi + x)\tan(\pi/2 + x)}{\sec(\pi/2 + x)\cos x\cot(\pi + x)} = 1$$

Answer

 $LHS = \frac{\cos(2\pi + x)\csc(2\pi + x)\tan(\frac{\pi}{2} + x)}{\sec(\frac{\pi}{2} + x)\csc\cot(\pi + x)}$ $= \frac{\cos x \csc x [-\cot x]}{[-\csc x] \cos x \cot x}$ $= \frac{-\cos x \csc x \cot x}{-\csc x \cos x \cot x}$

= 1

= RHS

Hence proved.

3 B. Question

Prove that :

$$\frac{\csc(90^{\circ} + x) + \cot(450^{\circ} + x)}{\csc(90^{\circ} + x) + \tan(180^{\circ} - x)} + \frac{\tan(180^{\circ} + x) + \sec(180^{\circ} - x)}{\tan(360^{\circ} + x) - \sec(-x)} = 2$$

Answer

 $\begin{aligned} \mathsf{LHS} &= \frac{\operatorname{cosec}\,(90^\circ + x) + \cot(450^\circ + x)}{\csc(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec(-x)} \\ &= \frac{\operatorname{cosec}\,(90^\circ + x) + \cot(90^\circ \times 5 + x)}{\csc(90^\circ - x) + \tan(90^\circ \times 2 - x)} + \frac{\tan(90^\circ \times 2 + x) + \sec(90^\circ \times 2 - x)}{\tan(90^\circ \times 4 + x) - \sec(-x)} \end{aligned}$

We know that when n is odd, $cosec \rightarrow sec$ and also sec (-x) = secx.

$$= \frac{\sec x + \cot(90^{\circ} \times 5 + x)}{\csc(90^{\circ} - x) + \tan(90^{\circ} \times 2 - x)} + \frac{\tan(90^{\circ} \times 2 + x) + \sec(90^{\circ} \times 2 - x)}{\tan(90^{\circ} \times 4 + x) - \sec(x)}$$

= $\frac{\sec x - \tan x}{\sec x - \tan x} + \frac{\tan x - \sec x}{\tan x - \sec x}$
= 1 + 1
= 2
= RHS

Hence proved.

3 C. Question

Prove that :

$$\frac{\sin(\pi-x)\cos\left(\frac{\pi}{2}+x\right)\tan\left(\frac{3\pi}{2}-x\right)\cot(2\pi-x)}{\sin(2\pi-x)\cos(2\pi+x)\csc(-x)\sin\left(\frac{3\pi}{2}-x\right)} = 1$$

Answer

$$LHS = \frac{\sin(\pi - x)\cos(\frac{\pi}{2} + x)\tan(\frac{3\pi}{2} - x)\cot(2\pi - x)}{\sin(2\pi - x)\cos(2\pi + x)\csc(-x)\sin(\frac{3\pi}{2} - x)}$$
$$= \frac{\sin(180^{\circ} - x)\cos(90^{\circ} + x)\tan(270^{\circ} - x)\cot(360^{\circ} - x)}{\sin(360^{\circ} - x)\cos(360^{\circ} + x)\csc(-x)\sin(270^{\circ} - x)}$$

We know that cosec (-x) = -cosecx.

$$=\frac{\sin(90^\circ \times 2-x)\cos(90^\circ \times 1+x)\tan(90^\circ \times 3-x)\cot(90^\circ \times 4-x)}{\sin(90^\circ \times 4-x)\cos(90^\circ \times 4+x)\left[-\csc\left(x\right)\right]\sin(90^\circ \times 3-x)}$$

<u>We know that when n is odd, $\cos \rightarrow \sin$, $\tan \rightarrow \cot$ and $\sin \rightarrow \cos$.</u>

$$=\frac{[-\sin x][-\sin x]\cot x[-\cot x]}{[-\sin x]\cos x[-\cos x][-\cos x]}$$

$$= \frac{\sin^2 x \cot^2 x}{\sin x \csc x \cos x \cos x}$$
$$= \frac{\sin^2 x \times \frac{\cos^2 x}{\sin^2 x}}{\sin x \times \frac{1}{\sin x} \times \cos^2 x}$$
$$= \frac{\cos^2 x}{\cos^2 x}$$
$$= 1$$
$$= RHS$$

Hence proved.

3 D. Question

Prove that :

$$\left\{1 + \cot x - \sec\left(\frac{\pi}{2} + x\right)\right\} \left\{1 + \cot x + \sec\left(\frac{\pi}{2} + x\right)\right\} = 2 \cot x$$

Answer

LHS =
$$\left\{1 + \cot x - \sec\left(\frac{\pi}{2} + x\right)\right\} \left\{1 + \cot x + \sec\left(\frac{\pi}{2} + x\right)\right\}$$

= $\left\{1 + \cot x - (-\csc x)\right\} \left\{1 + \cot x + (-\csc x)\right\}$
= $\left\{1 + \cot x + \csc x\right\} \left\{1 + \cot x - \csc x\right\}$
= $\left\{(1 + \cot x) + (\csc x)\right\} \left\{(1 + \cot x) - (\csc x)\right\}$
We know that $(a + b)(a - b) = a^2 - b^2$
= $(1 + \cot x)^2 - (\csc x)^2$
= $1 + \cot^2 x + 2 \cot x - \csc^2 x$
We know that $1 + \cot^2 x = \csc^2 x$
= $\csc^2 x + 2 \cot x - \csc^2 x$
= $2 \cot x$
= RHS
Hence proved.

3 E. Question

Prove that :

$$\frac{\tan\left(\frac{\pi}{2} - x\right)\sec(\pi - x)\sin(-x)}{\sin(\pi + x)\cot(2\pi - x)\csc\left(\frac{\pi}{2} - x\right)} = 1$$

Answer

$$LHS = \frac{\tan(\frac{\pi}{2} - x) \sec(\pi - x) \sin(-x)}{\sin(\pi + x) \cot(2\pi - x) \csc(\frac{\pi}{2} - x)}$$
$$= \frac{\tan(90^\circ - x) \sec(180^\circ - x) \sin(-x)}{\sin(180^\circ + x) \cot(360^\circ - x) \csc(90^\circ - x)}$$

CLICK HERE **》**

 $=\frac{\tan(90^{\circ}\times1-x)\sec(90^{\circ}\times2-x)\ [-\sin(x)]}{\sin(90^{\circ}\times2+x)\cot(90^{\circ}\times4-x)\csc(90^{\circ}\times1-x)}$

<u>We know that when n is odd, tan \rightarrow cot and cosec \rightarrow sec.</u>

 $=\frac{[\cot x][-\sec x][-\sin x]}{[-\sin x][-\cot x][\sec x]}$ $\cot x \sec x \sin x$

 $=\frac{\cot x \sec x \sin x}{\cot x \sec x \sin x}$

= 1

= RHS

Hence proved.

4. Question

Prove that :

$$\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2$$

Answer

LHS =
$$\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9}$$

= $\sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{8\pi}{18}$
= $\sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \left(\frac{\pi}{2} - \frac{2\pi}{18}\right) + \sin^2 \left(\frac{\pi}{2} - \frac{\pi}{18}\right)$
We know that when n is odd, $\sin \rightarrow \cos$.
= $\sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \cos^2 \frac{2\pi}{18} + \cos^2 \frac{\pi}{18}$

$$=\sin^2\frac{\pi}{18} + \cos^2\frac{\pi}{18} + \sin^2\frac{\pi}{18} + \cos^2\frac{\pi}{18}$$

<u>We know that $\sin^2 + \cos^2 x = 1$.</u>

= 1 + 1

= 2

= RHS

Hence proved.

5. Question

Prove that :

$$\sec\left(\frac{3\pi}{2} - x\right)\sec\left(x - \frac{5\pi}{2}\right) + \tan\left(\frac{5\pi}{2} + x\right)\tan\left(x - \frac{3\pi}{2}\right) = -1.$$

Answer

$$LHS = \sec\left(\frac{3\pi}{2} - x\right)\sec\left(x - \frac{5\pi}{2}\right) + \tan\left(\frac{5\pi}{2} + x\right)\tan\left(x - \frac{3\pi}{2}\right)$$
$$= \sec\left(\frac{3\pi}{2} - x\right)\left[-\sec\left(\frac{5\pi}{2} - x\right)\right] + \tan\left(\frac{5\pi}{2} + x\right)\left[-\tan\left(\frac{3\pi}{2} - x\right)\right]$$

Get More Learning Materials Here : 📕

Regional www.studentbro.in

We know that sec (-x) = sec (x) and tan (-x) = -tan (x).

$$= \sec\left(\frac{3\pi}{2} - x\right) \left[\sec\left(\frac{5\pi}{2} - x\right)\right] - \tan\left(\frac{5\pi}{2} + x\right) \left[\tan\left(\frac{3\pi}{2} - x\right)\right]$$
$$= \sec\left(\frac{\pi}{2} \times 3 - x\right) \sec\left(\frac{\pi}{2} \times 5 - x\right) - \tan\left(\frac{\pi}{2} \times 5 + x\right) \tan\left(\frac{\pi}{2} \times 3 - x\right)$$

<u>We know that when n is odd, sec \rightarrow cosec and tan \rightarrow cot.</u>

= [-cosecx] [cosecx] - [-cotx] [cotx]

 $= -\cos^2 x + \cot^2 x$

 $= - [cosec^2x - cot^2x]$

<u>We know that $cosec^2 x - cot^2 x = 1$ </u>

= -1

= RHS

Hence proved.

6. Question

In a $\triangle ABC$, prove that :

i. $\cos (A + B) + \cos C = 0$

ii.
$$\cos\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$$

iii. $tan \frac{A+B}{2} = cot \frac{C}{2}$

Answer

We know that in $\triangle ABC$, $A + B + C = \pi$ (i) Here $A + B = \pi - C$ LHS = cos (A + B) + cos C = cos ($\pi - C$) + cos C We know that cos ($\pi - C$) = -cos C = -cos C + cos C = 0 = RHS Hence proved. (ii) $\Rightarrow A + B = \pi - C$ $\Rightarrow \frac{A + B}{2} = \frac{\pi - C}{2}$ $\Rightarrow \frac{A + B}{2} = \frac{\pi}{2} - \frac{C}{2}$ LHS = cos $\left(\frac{A + B}{2}\right)$ = cos $\left(\frac{\pi}{2} - \frac{C}{2}\right)$

Get More Learning Materials Here :

CLICK HERE

<u>We know that $\cos(\frac{\pi}{2} - x) = \sin x$ </u>

$$=\sin\left(\frac{C}{2}\right)$$

= RHS

Hence proved.

(iii)

$$\Rightarrow A + B = \pi - C$$

$$\Rightarrow \frac{A + B}{2} = \frac{\pi - C}{2}$$

$$\Rightarrow \frac{A + B}{2} = \frac{\pi}{2} - \frac{C}{2}$$
LHS = $\tan\left(\frac{A + B}{2}\right)$

$$= \tan\left(\frac{\pi}{2} - \frac{C}{2}\right)$$

We know that $tan(\frac{\pi}{2} - x) = cotx$

$$= \cot\left(\frac{C}{2}\right)$$

= RHS

Hence proved

7. Question

If A, B, C, D be the angles of a cyclic quadrilateral taken in order prove that :

 $cs(180^{\circ} - A) + cos(180^{\circ} + B) + cos(180^{\circ} + C) - sin(90^{\circ} + D) = 0$

Answer

Given A, B, C and D are the angles of a cyclic quadrilateral.

```
\therefore A + C = 180^{\circ} \text{ and } B + D = 180^{\circ}
\Rightarrow A = 180^{\circ} - C \text{ and } B = 180^{\circ} - D
Now, LHS = cos (180<sup>o</sup> - A) + cos (180<sup>o</sup> + B) + cos (180<sup>o</sup> + C) - sin (90<sup>o</sup> + D)

= -cos A + [-cos B] + [-cos C] + [-cos D]

= -cos A - cos B - cos C - cos D

= -cos (180<sup>o</sup> - C) - cos (180<sup>o</sup> - D) - cos C - cos D

= -[-cos C] - [-cos D] - cos C - cos D

= cos C + cos D - cos C - cos D

= 0

= RHS

Hence proved.
```

8 A. Question

Find x from the following equations:

$$\operatorname{cosec}\left(\frac{\pi}{2} + \theta\right) + \operatorname{x}\cos\theta\cot\left(\frac{\pi}{2} + \theta\right) = \sin\left(\frac{\pi}{2} + \theta\right)$$

 $\Rightarrow \csc\left(\frac{\pi}{2} + \theta\right) + x\cos\theta \cot\left(\frac{\pi}{2} + \theta\right) = \sin\left(\frac{\pi}{2} + \theta\right)$ $\Rightarrow \csc\left(90^{\circ} + \theta\right) + x\cos\theta \cot\left(90^{\circ} + \theta\right) = \cos\theta$ $We know that when n is odd, <math>\cot \rightarrow \tan$. $\Rightarrow \sec\theta + x\cos\theta [-\tan\theta] = \cos\theta$ $\Rightarrow \sec\theta + x\cos\theta [-\tan\theta] = \cos\theta$ $\Rightarrow \sec\theta - x\cos\theta \tan\theta = \cos\theta$ $\Rightarrow \sec\theta - x\cos\theta (\sin\theta/\cos\theta) = \cos\theta$ $\Rightarrow \sec\theta - x\sin\theta = \cos\theta$ $\Rightarrow \sec\theta - x\sin\theta = \cos\theta$ $\Rightarrow \sec\theta - \cos\theta = x\sin\theta$ $\Rightarrow \frac{1 - \cos^{2}\theta}{\cos\theta} = x\sin\theta$ $We know that 1 - \cos^{2}\theta = \sin^{2}\theta$ $\Rightarrow \frac{\sin^{2}\theta}{\cos\theta} = x\sin\theta$

$$\Rightarrow \frac{\sin^2 \theta}{\cos \theta \sin \theta} = x$$
$$\Rightarrow \tan \theta = x$$
$$\therefore x = \tan \theta$$

8 B. Question

Find x from the following equations:

$$\operatorname{x} \operatorname{cot}\left(\frac{\pi}{2} + \theta\right) + \operatorname{tan}\left(\frac{\pi}{2} + \theta\right) \sin \theta + \operatorname{cosec}\left(\frac{\pi}{2} + \theta\right) = 0$$

Answer

Given
$$x \cot\left(\frac{\pi}{2} + \theta\right) + \tan\left(\frac{\pi}{2} + \theta\right) \sin\theta + \csc\left(\frac{\pi}{2} + \theta\right) = 0$$

 $\Rightarrow x \cot(90^\circ + \theta) + \tan(90^\circ + \theta) \sin\theta + \csc(90^\circ + \theta) = 0$
 $\Rightarrow x [-\tan \theta] + [-\cot \theta] \sin\theta + \sec \theta = 0$
 $\Rightarrow -x \left[\frac{\sin \theta}{\cos \theta}\right] - \frac{\cos \theta}{\sin \theta} \sin \theta + \frac{1}{\cos \theta} = 0$
 $\Rightarrow -x \left[\frac{\sin \theta}{\cos \theta}\right] - \cos \theta + \frac{1}{\cos \theta} = 0$
 $\Rightarrow -x \sin \theta - \cos^2 \theta + 1 = 0$
 $\Rightarrow -x \sin \theta - \cos^2 \theta + 1 = 0$
We know that $1 - \cos^2 \theta = \sin^2 \theta$

 $\Rightarrow -x \sin \theta + \sin^2 \theta = 0$ $\Rightarrow x \sin \theta = \sin^2 \theta$ $\Rightarrow x = \sin^2 \theta / \sin \theta$ $\therefore x = \sin \theta$

9 A. Question

Prove that:

 $\tan 4\pi - \cos \frac{3\pi}{2} - \sin \frac{5\pi}{6} \cos \frac{2\pi}{3} = \frac{1}{4}$

Answer

LHS = $\tan 4\pi - \cos \frac{3\pi}{2} - \sin \frac{5\pi}{6} \cos \frac{2\pi}{3}$ = $\tan 720^{\circ} - \cos 270^{\circ} - \sin 150^{\circ} \cos 120^{\circ}$ = $\tan (90^{\circ} \times 8 + 0^{\circ}) - \cos (90^{\circ} \times 3 + 0^{\circ}) - \sin (90^{\circ} \times 1 + 60^{\circ}) \cos (90^{\circ} \times 1 + 30^{\circ})$ <u>We know that when n is odd, $\cos \rightarrow \sin and \sin \rightarrow \cos$.</u> = $\tan 0^{\circ} - \sin 0^{\circ} - \cos 60^{\circ} [-\sin 30^{\circ}]$ = $\tan 0^{\circ} - \sin 0^{\circ} + \cos 60^{\circ} \sin 30^{\circ}$ = 0 - 0 + 1/2 (1/2)= 1/4= RHS

Hence proved.

9 B. Question

Prove that:

 $\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}$

Answer

$$LHS = \sin \frac{13\pi}{3} \sin \frac{8\pi}{3} + \cos \frac{2\pi}{3} \sin \frac{5\pi}{6}$$

= sin 780° sin 480° + cos 120° sin 150°
= sin (90° × 8 + 60°) sin (90° × 5 + 30°) + cos (90° × 1 + 30°) sin (90° × 1 + 60°)
We know that when n is odd, cos \rightarrow sin and sin \rightarrow cos.
= sin 60° cos 30° + [-sin 30°] cos 60°
= sin 60° cos 30° - sin 30° cos 60°
We know that sin A cos B - cos A sin B = sin (A - B)
= sin (60° - 30°)
= sin 30°
= 1/2
= RHS
Hence proved.

9 C. Question

Prove that:

$$\sin\frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}$$

Answer

 $LHS = \sin \frac{13\pi}{3} \sin \frac{2\pi}{3} + \cos \frac{4\pi}{3} \sin \frac{13\pi}{6}$ = sin 780° sin 120° + cos 240° sin 390° = sin (90° × 8 + 60°) sin (90° × 1 + 30°) + cos (90° × 2 + 60°) sin (90° × 4 + 30°) We know that when n is odd, sin \rightarrow cos. = sin 60° cos 30° + [-cos 60°] sin 30° = sin 60° cos 30° - sin 30° cos 60° We know that sin A cos B - cos A sin B = sin (A - B) = sin (60° - 30°) = sin 30°

$$= 1/2$$

Hence proved.

9 D. Question

Prove that:

$$\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = -1$$

Answer

```
LHS = \sin \frac{10\pi}{3} \cos \frac{13\pi}{3} + \cos \frac{9\pi}{3} \sin \frac{5\pi}{6}
= sin 600° cos 390° + cos 480° sin 150°
= sin (90° × 6 + 60°) cos (90° × 4 + 30°) + cos (90° × 5 + 30°) sin (90° × 1 + 60°)
We know that when n is odd, sin \rightarrow cos and cos \rightarrow sin.
= [-sin 60°] cos 30° + [-sin 30°] cos 60°
= -sin 60° cos 30° - sin 30° cos 60°
= -[sin 60° cos 30° + cos 60° sin 30°]
We know that sin A cos B + cos A sin B = sin (A + B)
= -sin (60° + 30°)
= -1
= RHS
Hence proved.
9 E. Question
Prove that:
```

Get More Learning Materials Here :

CLICK HERE

$$\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0$$

```
LHS = \tan \frac{5\pi}{4} \cot \frac{9\pi}{4} + \tan \frac{17\pi}{4} \cot \frac{15\pi}{4}
= tan 225° cot 405° + tan 765° cot 675°
= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)
We know that when n is odd, cot \rightarrow tan.
= tan 45° cot 45° + tan 45° [-tan 45°]
= tan 45° cot 45° - tan 45° tan 45°
= 1 × 1 - 1 × 1
= 1 - 1
= 0
= RHS
```

Hence proved.

Very Short Answer

1. Question

Write the maximum and minimum values of cos (cos x).

Answer

Let $\cos x = t$

Range of t = (-1, 1)

 \therefore Maximum and Minimum value of cos x is 1 and -1 respectively.

Now,

 $\cos(-x) = \cos x$

 \therefore Range of cos(cos x) = [cos(1),cos(0)]

 $\Rightarrow \cos(\cos x) = [\cos 1, 0]$

2. Question

Write the maximum and minimum values of sin (sin x).

Answer

sin(x) has maximum value at $x = \pi/2$ and its minimum at

 $x = -\pi/2$ which are 1 and -1 respectively.

As $1 < \pi/2$;

so, the argument of the outer sin always lies within the interval

[-π/2, π/2]

So the maximum and minimum of the given function are

 \sin 1 and - \sin 1.

3. Question

Write the maximum value of sin (cos x).

Value of $\cos(x)$ varies from -1 to 1 for all R and $\sin(x)$ is increasing in $[-\pi/2,\pi/2]$

 \therefore sin(cos x) has max value of sin1.

4. Question

If sin x = $\cos^2 x$, then write the value of $\cos^2 x (1 + \cos^2 x)$.

Answer

```
Given sin x = \cos^2 x
```

To find the value of $\cos^2 x (1 + \cos^2 x)$.

 $\Rightarrow \cos^2 x \ (1 + \cos^2 x).$

 $\Rightarrow \cos^2 x + \cos^4 x.$

As $\cos^2 x = 1 - \sin^2 x$ the above equation becomes

```
\Rightarrow 1 - \sin^2 x + \sin^2 x
```

```
⇒1.
```

5. Question

If sin x = cosec x = 2, then write the value of sinⁿ x + cosecⁿ x.

Answer

(Question might be different)

sin x + cosec x = 2

 $\Rightarrow \sin x + \frac{1}{\sin x} = 2$ $\Rightarrow \sin^2 x + 1 = 2\sin x$ $\Rightarrow \sin^2 x - 2\sin x + 1 = 0$ $\Rightarrow (\sin x - 1)^2 = 0$ $\Rightarrow \sin x = 1$ As $\sin x = 1$ As $\sin x = 1$ $\sin^n x = 1$ $\therefore \sin^n x + \csc^n x$ $\Rightarrow \sin^n x + \frac{1}{\sin^n x} = 1 + 1$ $\Rightarrow 2.$

6. Question

If sin x + sin² x = 1, then write the value of $\cos^{12} x + 3 \cos^{10} x + 3 \cos^{8} x + \cos^{6} x$.

Answer

```
Given: \sin x + \sin^2 x = 1
To find the value of \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x.
\Rightarrow \sin x = 1 - \sin^2 x
\Rightarrow \sin x = \cos^2 x
```


 $\Rightarrow \cos^{12} x = \sin^{6} x, \cos^{10} x = \sin^{5} x, \cos^{8} x = \sin^{4} x, \cos^{6} x = \sin^{3} x.$ Substituting above values in given equation we get $\Rightarrow \sin^{6} x + 3\sin^{5} x + 3\sin^{8} x + \sin^{3} x [(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}]$ $\Rightarrow (\sin x + \sin^{2} x)^{3} = (1)^{3}$ $\Rightarrow 1.$

7. Question

If sin x + sin² x = 1, then write the value of $\cos^{8} x + 2 \cos^{6} x + \cos^{4} x$.

Answer

```
Given: \sin x + \sin^2 x = 1

To find the value of \cos^8 x + 2 \cos^6 x + \cos^4 x.

\Rightarrow \sin x = 1 - \sin^2 x

\Rightarrow \sin x = \cos^2 x

\Rightarrow \cos^8 x = \sin^4 x, \cos^6 x = \sin^3 x, \cos^4 x = \sin^2 x.

Substituting above values in given equation we get

\Rightarrow \sin^4 x + 2 \sin^3 x + \sin^2 x [(a+b)^2 = a^2 + 2ab + b^2]

\Rightarrow (\sin x + \sin^2 x)^2 = (1)^2

\Rightarrow 1
```

8. Question

If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$, then write the value of $\cos \theta_1 + \cos \theta_2 + \cos \theta_3$.

Answer

Given that $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$

We know that in general the maximum value of sin $\theta = 1$ when $\theta = \pi/2$

As $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$

 $\Rightarrow \theta_1 = \theta_2 = \theta_3 = \pi/2.$

The above case is the only possible condition for the given condition to satisfy.

```
\therefore \cos \theta_1 + \cos \theta_2 + \cos \theta_3
```

 $\Rightarrow \cos \pi/2 + \cos \pi/2 + \cos \pi/2$

```
⇒0+0+0
```

⇒ 0.

9. Question

Write the value of $\sin 10^\circ + \sin 20^\circ + \sin 30^\circ + \dots + \sin 360^\circ$.

Answer

We know $sin(180+\theta) = -sin \theta$ Also, $sin(360-\theta) = -sin \theta$ Given all angles are complementary in nature. $sin350 = sin(360-10) = -sin10^{\circ}$

so finally each of them cancel each other and finally we get

the sum equal to 0.

10. Question

A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.

Answer

Let the angle subtended be θ .

For calculating we have the formula $\frac{\text{Radius}}{\text{Circumfernce}} = \frac{\theta}{360}$

 $\Rightarrow \frac{15}{120} = \frac{\theta}{360}$ $\Rightarrow \theta = \frac{15 \times 360}{120}$

 $\Rightarrow \theta = 45^{\circ}$

11. Question

Write the value of 2 $(\sin^6 x + \cos^6 x) - 3 (\sin^4 x + \cos^4 x) + 1$.

Answer

```
\sin^{6}x + \cos^{6}x = (\sin^{2}x)^{3} + (\cos^{2}x)^{3}
=(\sin^2 x + \cos^2 x)(\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x)
= 1 (\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x)
Substituting above value in given equation
\Rightarrow 2(\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x) - 3(\sin^4 x + \cos^4 x) + 1
\Rightarrow 2\sin^4 x + 2\cos^4 x - 2\sin^2 x \cos^2 x - 3\sin^4 x \cdot 3\cos^4 x + 1.
\Rightarrow -sin<sup>4</sup>x-cos<sup>4</sup>x-2sin<sup>2</sup>xcos<sup>2</sup>x+1
\Rightarrow -[(\sin^2 x)^2 + (\cos^2 x)^2 - 2\sin^2 x \cos^2 x] + 1
\Rightarrow -[(\sin^2 x + \cos^2 x)^2] + 1
⇒ -1+1
⇒ 0.
12. Question
Write the value of \cos 1^\circ + \cos 2^\circ + \cos 3^\circ + \dots + \cos 180^\circ.
Answer
The given expression can be rearranged as:
(\cos 1 + \cos 179) + (\cos 2 + \cos 178) + (\cos 3 + \cos 177) + ... + (\cos 89 + \cos 91) + (\cos 90) + \cos 180
We know that: cos(180 - x) = -cos x.
So all the bracket totals except last 2 terms will be zero.
So given expression is: 0 + (\cos 90) + (\cos 180)
= 0 + 0 + (-1)
=-1.
```


13. Question

If $\cot (\alpha + \beta) = 0$, then write the value of $\sin (\alpha + 2\beta)$.

Answer

Given: $\cot(\alpha + \beta) = 0$

 $\therefore \frac{\cot \alpha . \cot \beta - 1}{\cot \alpha + \cot \beta} = 0$ $\Rightarrow \cot \alpha . \cot \beta = 1$ $\Rightarrow \cot \alpha = \frac{1}{\cot \beta}$ $\Rightarrow \frac{\cos \alpha}{\sin \alpha} = \frac{\sin \beta}{\cos \beta}$

Now,

 $Sin(\alpha + 2\beta) = sin\alpha.cos2\beta + cos\alpha.sin2\beta$

=sin α (2 cos² β -1)+cos α .2 sin β .cos β

14. Question

If tan A + cot A = 4, then write the value of $tan^4 A + cot^4 A$.

Answer

Given: tanA + cotA = 4

$$\Rightarrow \tan A + \frac{1}{\tan A} = 4$$

Squaring both sides we get

$$\Rightarrow \left(\tan A + \frac{1}{\tan A}\right)^2 = 4^2$$
$$\Rightarrow \tan^2 A + \frac{1}{\tan^2 A} + 2 \cdot \tan A \cdot \frac{1}{\tan A} = 16$$
$$\Rightarrow \tan^2 A + \frac{1}{\tan^2 A} = 14$$

Squaring both sides we get

$$\Rightarrow \left(\tan^2 A + \frac{1}{\tan^2 A}\right)^2 = 14^2$$
$$\Rightarrow \tan^4 A + \frac{1}{\tan^4 A} + 2 \cdot \tan^2 A \cdot \frac{1}{\tan^2 A} = 196$$
$$\Rightarrow \tan^4 A + \frac{1}{\tan^4 A} = 194$$

15. Question

Write the least value of $\cos^2 x + \sec^2 x$.

Answer

We know that $\cos^2 x$ and $\sec^2 x \ge 0$

 \therefore By applying AM and GM we get,

$$\Rightarrow \frac{\cos^2 x + \sec^2 x}{2} \ge \cos^2 x \cdot \sec^2 x$$

$$\Rightarrow \cos^2 x + \sec^2 x \ge 2$$

 \therefore Least value of the given function is 2.

16. Question

If $x = sin^{14}x + cos^{20}x$, then write the smallest interval in which the value of x lie.

Answer

We know the range of sin x is

 $-1 \le \sin x \le 1$

 $\therefore 0 \le \sin^{14} x \le 1$

We know the range of cos x is

 $-1 \le \cos x \le 1$

 $\therefore 0 \le \cos^{20} x \le 1$

 $0 < \sin^{14}x + \cos^{20}x \le 2$

which means that the value of x lies in the interval [0,2]

But there's a problem, when sine is 0 cosine is 1, they might even be 0 and -1 at particular points (not in this case, since they are even powers), so the minimum we would get should be more than 0. Hence the value of x lies in (0,1]

17. Question

If $3 \sin x + 5 \cos x = 5$, then write the value of $5 \sin x - 3 \cos x$.

Answer

```
\Rightarrow 3 sin x +5cos x = 5
\Rightarrow 3sin x = 5-5cos x
\Rightarrow 3sin x = 5(1-cos x)
Squaring both sides we get
\Rightarrow 9\sin^2 x = 25(1-\cos x)^2
\Rightarrow 9sin<sup>2</sup>x = 25(1+cos<sup>2</sup>x-2cos x)
\Rightarrow 9\sin^2 x + 9\cos^2 x = 25 + 25\cos^2 x - 50\cos x + 9\cos^2 x
\Rightarrow 9(\sin^2 x + \cos^2 x) = 25 + 34\cos^2 x - 50\cos x
\Rightarrow 34cos<sup>2</sup>x-50cos x+16=0
\Rightarrow 17\cos^2 x - 25\cos x + 8 = 0
\Rightarrow 17cos<sup>2</sup>x-17cos x-8cos x+8=0
\Rightarrow 17cos x(cos x-1)-8(cos x-1)=0
\Rightarrow \cos x = \frac{8}{17}, \cos x = 1
When \cos x = 1
3\sin x + 5\cos x = 5
3\sin x = 0
\sin x = 0
Substituting the value \cos x = 1 and \sin x = 0
5(0)-3(1) = 0-3
⇒ -3.
```


$$\Rightarrow \cos x = \frac{8}{17}$$

$$\Rightarrow \sin^2 x + \cos^2 x = 1$$

$$\Rightarrow \sin^2 x = 1 - \cos^2 x$$

$$\Rightarrow \sin^2 x = 1 - \frac{64}{289}$$

$$\Rightarrow \sin^2 x = \frac{225}{289}$$

$$\Rightarrow \sin x = \frac{15}{17}$$

$$\Rightarrow 5\sin x - 3\cos x$$

$$\Rightarrow 5 \times \frac{15}{17} - 3 \times \frac{8}{17}$$

$$\Rightarrow \frac{51}{17} = 3.$$

 \therefore -3 and 3.

MCQ

1. Question

Mark the correct alternative in the following:

If $\tan x = x - \frac{1}{4x}$, then $\sec x - \tan x$ is equal to A. -2x, $\frac{1}{2x}$ B. $-\frac{1}{2x}$, 2xC. 2xD. 2x, $\frac{1}{2x}$ Answer $\Rightarrow \tan^2 x = x^2 + \frac{1}{16x^2} - 2x\frac{1}{4x}$ $\Rightarrow \tan^2 x = x^2 + \frac{1}{16x^2} - \frac{1}{2}$ $\Rightarrow \sec^2 x - 1 = x^2 + \frac{1}{16x^2} - \frac{1}{2}$ $\Rightarrow \sec^2 x = x^2 + \frac{1}{16x^2} + \frac{1}{2}$ $\Rightarrow \sec^2 x = (x + \frac{1}{4x})^2$

$$\Rightarrow \sec x = x + \frac{1}{4x}, -x - \frac{1}{4x}$$

⇒ sec x - tan x

$$\Rightarrow x + \frac{1}{4x} - \left(x - \frac{1}{4x}\right)$$
$$\Rightarrow \frac{1}{2x}$$
$$\Rightarrow \sec x - \tan x$$
$$\Rightarrow -x - \frac{1}{4x} - x + \frac{1}{4x}$$
$$\Rightarrow -2x$$

 \therefore the value of sec x - tan x = -2x, 1/2x.

2. Question

Mark the correct alternative in the following:

=

If sec
$$x = x + \frac{1}{4x}$$
, then sec $x + \tan x$
A. $x, \frac{1}{x}$
B. $2x, \frac{1}{2x}$
C. $-2x, \frac{1}{2x}$
D. $-\frac{1}{x}, x$
Answer

$$\Rightarrow \sec^{2} x = x^{2} + \frac{1}{16x^{2}} + 2x\frac{1}{4x}$$

$$\Rightarrow \sec^{2} x = x^{2} + \frac{1}{16x^{2}} + \frac{1}{2}$$

$$\Rightarrow \tan^{2} x + 1 = x^{2} + \frac{1}{16x^{2}} + \frac{1}{2}$$

$$\Rightarrow \tan^{2} x = x^{2} + \frac{1}{16x^{2}} - \frac{1}{2}$$

$$\Rightarrow \tan^{2} x = \left(x - \frac{1}{4x}\right)^{2}$$

$$\Rightarrow \tan x = x - \frac{1}{4x}, -x + \frac{1}{4x}$$

$$\Rightarrow \sec x - \tan x$$

$$\Rightarrow x + \frac{1}{4x} - \left(x - \frac{1}{4x}\right)$$

$$\Rightarrow \frac{1}{2x}$$

$$\Rightarrow \sec x - \tan x$$

$$\Rightarrow x + \frac{1}{4x} + x - \frac{1}{4x}$$

 \therefore the value of sec x - tan x = 2x, 1/2x.

3. Question

Mark the correct alternative in the following:

If
$$\frac{\pi}{2} < x < \frac{3\pi}{2}$$
, then $\sqrt{\frac{1-\sin x}{1+\sin x}}$ is equal to

A. sec x – tan x

- B. sec x + tan x
- C. tan x sec x
- D. none of these

Answer

Given:

$$\Rightarrow \frac{-\pi}{2} < x < \frac{3\pi}{2}$$

Now

 $\Rightarrow \sqrt{\frac{1-\sin x}{1+\sin x}}$ (Rationalizing we get)

$$\Rightarrow \sqrt{\frac{1 - \sin x}{1 + \sin x}} \times \sqrt{\frac{1 - \sin x}{1 - \sin x}}$$
$$\Rightarrow \sqrt{\frac{(1 - \sin x)^2}{1 - \sin^2 x}}$$
$$\Rightarrow \sqrt{\frac{(1 - \sin x)^2}{\cos^2 x}}$$
$$\Rightarrow \frac{1 - \sin x}{\cos x}$$

⇒ sec x – tan x

In the given range tan x = -tan x and sec x is -sec x

∴ -sec x-(-tan x)

⇒ tan x - sec x

4. Question

Mark the correct alternative in the following:

If
$$\pi < x < 2\pi$$
, then $\sqrt{\frac{1+\cos x}{1-\cos x}}$ is equal to
A. cosec x + cot x
B. cosec x - cot x
C. - cosec x + cot x
D. - cosec x - cot x

Given:

⇒ π<x<2π

Now

$$\Rightarrow \sqrt{\frac{1+\cos x}{1-\cos x}} (\text{Rationalizing we get})$$

$$\Rightarrow \sqrt{\frac{1+\cos x}{1-\cos x}} \times \sqrt{\frac{1+\cos x}{1+\cos x}}$$

$$\Rightarrow \sqrt{\frac{(1+\cos x)^2}{1-\cos^2 x}}$$

$$\Rightarrow \sqrt{\frac{(1+\cos x)^2}{\sin^2 x}}$$

$$\Rightarrow \frac{1+\cos x}{\sin x}$$

$$\Rightarrow \csc x + \cot x$$

In the given range $\cot x = -\cot x$ and $\csc x$ is $-\csc x$

 \therefore -cosec x-(+cot x)

⇒ -cosec x - cot x

5. Question

Mark the correct alternative in the following:

If
$$0 < x < \frac{\pi}{2}$$
, and if $\frac{y+1}{1-y} = \sqrt{\frac{1+\sin x}{1-\sin x}}$, then y is equal to
A. $\cot \frac{x}{2}$
B. $\tan \frac{x}{2}$
C. $\cot \frac{x}{2} + \tan \frac{x}{2}$
D. $\cot \frac{x}{2} - \tan \frac{x}{2}$
Answer

$$\frac{y+1}{1-y} = \sqrt{\frac{1+\sin x}{1-\sin x}} \left[\text{Use } 1 = \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} \right]$$
$$\frac{y+1}{1-y} = \sqrt{\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}}$$

$$\frac{y+1}{1-y} = \sqrt{\frac{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2}{\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)^2}}$$

If $0 < x < \pi/2$ then we take $\cos \frac{x}{2} - \sin \frac{x}{2}$. So, that square root is open with positive sign.

$$\frac{y+1}{1-y} = \frac{\sin\frac{x}{2} + \cos\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}$$

Adding 1 on both sides

$$\frac{y+1}{1-y} + 1 = \frac{\sin\frac{x}{2} + \cos\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}} + 1$$

$$\frac{(y+1) + (1-y)}{1-y} = \frac{\sin\frac{x}{2} + \cos\frac{x}{2} + \cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}$$

$$\frac{2}{1-y} = \frac{2\cos\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}$$

$$\frac{1-y}{1} = \frac{\cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2}}$$

$$1-y = 1 - \tan\frac{x}{2}$$

$$y = \tan\frac{x}{2}$$

6. Question

Mark the correct alternative in the following:

If
$$\frac{\pi}{2} < x < \pi$$
, then $\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}$ is equal to
A. 2 sec x
B. - 2 sec x
C. sec x
D. - sec x

Answer

$$\begin{split} &\sqrt{\frac{1-\sin x}{1+\sin x}} + \sqrt{\frac{1+\sin x}{1-\sin x}} \left[\text{Use } 1 = \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} \right] \\ \Rightarrow &\sqrt{\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} + \sqrt{\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}} \\ \Rightarrow &\sqrt{\frac{\left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)^2}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2}} + \sqrt{\frac{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2}{\left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)^2}} \end{split}$$

$$\Rightarrow \frac{\sin\frac{x}{2} - \cos\frac{x}{2}}{\sin\frac{x}{2} + \cos\frac{x}{2}} + \frac{\sin\frac{x}{2} + \cos\frac{x}{2}}{\sin\frac{x}{2} - \cos\frac{x}{2}}$$

$$\Rightarrow \frac{\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right) + \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)}{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)}$$

$$\Rightarrow \frac{\sin^{2}\frac{x}{2} + \cos^{2}\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^{2}\frac{x}{2} + \cos^{2}\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)}$$

$$\Rightarrow \frac{2}{\sin^{2}\frac{x}{2} - \cos^{2}\frac{x}{2}} \left[\text{Use } \cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2} = \cosx \right]$$

$$\Rightarrow \frac{2}{-\cosx}$$

$$\Rightarrow -2 \secx$$

7. Question

Mark the correct alternative in the following:

If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then $x^2 + y^2 + z^2$ is independent of

Α. θ, φ

B. r, θ

C. r, φ

D. r

Answer

Given:

 $X = r \sin \theta \cos \phi$ $Y = r \sin \theta \sin \phi$ $Z = r \cos \theta$ $\Rightarrow x^{2}+y^{2}+z^{2}$ $\Rightarrow (r \sin \theta \cos \phi)^{2} + (r \sin \theta \sin \phi)^{2} + (r \cos \theta)^{2}$ $\Rightarrow r^{2}\sin^{2}\theta\cos^{2}\phi + r^{2}\sin^{2}\theta\sin^{2}\phi + r^{2}\cos^{2}\theta$ $\Rightarrow r^{2}\sin^{2}\theta(\cos^{2}\phi + \sin^{2}\phi) + r^{2}\cos^{2}\theta$ $\Rightarrow r^{2}\sin^{2}\theta + r^{2}\cos^{2}\theta$ $\Rightarrow r^{2}(\sin^{2}\theta + \cos^{2}\theta)$ $\Rightarrow r^{2}.$ \therefore It is independent of θ and ϕ .

8. Question

Mark the correct alternative in the following:

If $\tan x + \sec x = \sqrt{3}, 0x < \pi$, then x is equal to

A. $\frac{5\pi}{6}$

B.
$$\frac{2\pi}{3}$$

C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Given: $\tan x + \sec x = \sqrt{3}$ squaring on both sides $(\tan x + \sec x)^2 = \sqrt{3^2}$ $\tan^2 x + \sec^2 x + 2 \tan x \sec x = 3$ Also, $\sec^2 x - \tan^2 x = 1$ $\tan^2 x + 1 + \tan^2 x + 2\tan x \sec x = 3$ $2\tan^2 x + 2\tan x \sec x = 3-1$ $\tan^2 x + \tan x \sec x = 2/2$ $\tan^2 x + \tan x \sec x = 1$ $\tan x \sec x = 1 - \tan^2 x$ again, squaring on both sides $\tan^{2}x \sec^{2}x = 1 + \tan^{4}x - 2 \tan^{2}x$ $(1 + \tan^2 x) \tan^2 x = 1 + \tan^4 x - 2 \tan^2 x$ $Tan^{4}x + tan^{2}x = 1 + tan^{4}x - 2 tan^{2}x$ $3 \tan^2 x = 1$ $\tan x = 1/\sqrt{3}$ $x = \pi/6$.

9. Question

Mark the correct alternative in the following:

If
$$\tan x = -\frac{1}{\sqrt{5}}$$
 and x lies in the IV quadrant, then the value of $\cos x$ is
A. $\frac{\sqrt{5}}{\sqrt{6}}$
B. $\frac{2}{\sqrt{6}}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{6}}$

In IV quadrant cos x is positive

We know

 $\tan^2 x + 1 = \sec^2 x$

$$\Rightarrow \left(-\frac{1}{\sqrt{5}}\right)^2 + 1 = \sec^2 x$$
$$\Rightarrow \frac{1}{5} + 1 = \sec^2 x$$
$$\Rightarrow \sec^2 x = \frac{6}{5}$$
$$\Rightarrow \cos^2 x = \frac{5}{6}$$
$$\therefore \cos x = \frac{\sqrt{5}}{\sqrt{6}}$$

10. Question

Mark the correct alternative in the following:

If
$$\frac{3\pi}{4} < \alpha < \pi$$
, then $\sqrt{2 \cot \alpha + \frac{1}{\sin^2 \alpha}}$ is equal to
A. $1 - \cot \alpha$
B. $1 + \cot \alpha$
C. $-1 + \cot \alpha$
D. $-1 - \cot \alpha$
Answer

Given:

$$\Rightarrow \frac{3\pi}{4} < \alpha < \pi$$

$$\Rightarrow \sqrt{2 \cot \alpha + \frac{1}{\sin^2 \alpha}}$$

$$\Rightarrow \sqrt{2 \cot \alpha + \csc^2 \alpha}$$
We know $\csc^2 \alpha = \cot^2 \alpha + 1$

$$\Rightarrow \sqrt{2 \cot \alpha + 1 + \cot^2 \alpha}$$

$$\Rightarrow \sqrt{(\cot \alpha + 1)^2}$$

$$\Rightarrow \cot \alpha + 1$$
In the given range cot is negative

∴ -1-cotα

11. Question

Mark the correct alternative in the following:

 $\sin^6 A + \cos^6 A + 3 \sin^2 A \cos^2 A =$

- A. 0
- B. 1
- C. 2
- D. 3

 $sin^{6}A + cos^{6}A = (sin^{2}A)^{3} + (cos^{2}A)^{3}$ $= (sin^{2}A + cos^{2}A)(sin^{4}A + cos^{4}A - sin^{2}Acos^{2}A)$ $= 1 (sin^{4}A + cos^{4}A - sin^{2}Acos^{2}A)$ $\therefore sin^{4}A + cos^{4}A - sin^{2}Acos^{2}A + 3 sin^{2} A cos^{2} A$ $\Rightarrow sin^{4}A + cos^{4}A + 2sin^{2}Acos^{2}A$ $\Rightarrow (sin^{2}A + cos^{2}A)^{2}$ $= 1^{2}$ = 1

12. Question

Mark the correct alternative in the following:

If
$$\csc x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2}$$
, then $\cos x$ is equal to
A. $\frac{5}{3}$
B. $\frac{3}{5}$
C. $-\frac{3}{5}$
D. $-\frac{5}{3}$

Answer

Given:

Let cosec x = a, cot x = b

 \therefore According to the question

 $\Rightarrow a - b = \frac{1}{2}$ But, cosec²x -cot²x =1 $\Rightarrow a^{2} - b^{2} = 1$ $\Rightarrow (a-b) (a + b) = 1$

$$\Rightarrow \frac{1}{2}(a+b) = 1$$

 \Rightarrow a + b=2 a-b =1/2 ...(1)

a + b =2 ...(2)
Adding (1) and (2)
2a = 1/2+2
⇒ a = 5/4
∴ csc x =
$$\frac{5}{4}$$

⇒ sin x = $\frac{4}{5}$
Cos²x = 1 - sin²x
⇒ cos²x = 1 - $\frac{16}{25}$
⇒ cos²x = $\frac{9}{25}$
⇒ cos x = $\frac{3}{5}$

13. Question

Mark the correct alternative in the following:

If $\operatorname{cosec} x + \cot x = \frac{11}{2}$, then $\tan x =$ A. $\frac{21}{22}$ B. $\frac{15}{16}$ C. $\frac{44}{117}$ D. $\frac{117}{44}$ Answer

Let cosec x = a, cot x = b

 \therefore According to the question

$$\Rightarrow a - b = \frac{11}{2}$$

But, cosec²x -cot²x = 1
$$\Rightarrow a^{2} - b^{2} = 1$$
$$\Rightarrow (a-b)(a + b) = 1$$
$$\Rightarrow \frac{11}{2}(a + b) = 1$$
$$\Rightarrow a + b = \frac{2}{11}$$
$$a - b = \frac{11}{2} \dots (1)$$

$$a + b = \frac{2}{11} \dots (2)$$

Adding (1) and (2)
$$\Rightarrow 2a = \frac{11}{2} + \frac{2}{11}$$
$$\Rightarrow a = \frac{125}{44}$$
$$\Rightarrow \frac{125}{44} - \frac{11}{2} = b$$
$$\Rightarrow b = \frac{-117}{44}$$
$$\therefore \cot x = \frac{-117}{44}$$
$$\Rightarrow \tan x = \frac{44}{117}$$

14. Question

Mark the correct alternative in the following:

 $\sec^{2} x = \frac{4 xy}{(x + y)^{2}}$ is true if and only if A. $x + y \neq 0$ B. $x + y, x \neq 0$ C. x = yD. $x \neq 0, y \neq 0$ **Answer** First of all we need to check the condition on x

If x = 0 then sec²x attains to infinity, so that condition must be true i.e x should not be zero

Again if x+y = 0 then the RHS part becomes infinity so that condition must be true i.e. x+y should not be zero.

 \therefore Option B is the correct answer.

15. Question

Mark the correct alternative in the following:

If x is an acute angle and
$$\tan x = \frac{1}{\sqrt{7}}$$
, then the value of $\frac{\csc^2 x - \sec^2 x}{\csc^2 x + \sec^2 x}$ is

A. 3/4

B. 1/2

C. 2

D. 5/4

Answer

Given x is an acute angle and value of tan $x = 1/\sqrt{7}$.

Get More Learning Materials Here : 📕

⇒ We know $\tan^2 x + 1 = \sec^2 x$ ⇒ Also, $\cot^2 x + 1 = \csc^2 x$ ∴ $\tan^2 x = \frac{1}{7}$ ∴ $\tan^2 x + 1 = \frac{1}{7} + 1 = \frac{8}{7}$ ⇒ $\sec^2 x = \frac{8}{7}$ ⇒ $\cot^2 x = 7$ ⇒ $\cot^2 x = 7$ ⇒ $\cot^2 x + 1 = 7 + 1$ =8 ⇒ $\csc^2 x - \sec^2 x = 8$ ∴ $\frac{\csc^2 x - \sec^2 x}{\csc^2 x + \sec^2 b_x} = \frac{8 - \frac{8}{7}}{8 + \frac{8}{7}}$ ⇒ $\frac{\frac{48}{7}}{\frac{64}{7}}$ ⇒ $\frac{\frac{48}{64}}{\frac{64}{7}} = \frac{3}{4}$

16. Question

Mark the correct alternative in the following:

The value of $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + ... + \sin^2 85^\circ + \sin^2 90^\circ$ is

A. 7

B. 8

C. 9.5

D. 10

Answer

 $=\sin^{2}5 + \sin^{2}10 + \sin^{2}15 + \dots + \sin^{2}75 + \sin^{2}80 + \sin^{2}85 + \sin^{2}90$ We know that $\sin(90 - x) = \cos x$ So $\sin^{2}(90 - x) = \cos^{2}x$ $=\sin^{2}5 + \sin^{2}10 + \sin^{2}15 + \dots + \cos^{2}15 + \cos^{2}10 + \cos^{2}5 + \sin^{2}90$ And $\sin^{2}x + \cos^{2}x = 1$ So, in given series on rearranging terms we get 8 cases where $\sin^{2}x + \cos^{2}x = 1$ So, given changes to $8 + \sin^{2}45 + \sin^{2}90$ $= 8 + \frac{1}{2} + 1$ $= 9 + \frac{1}{2}$

Get More Learning Materials Here :

17. Question

Mark the correct alternative in the following:

$$\sin^{2}\frac{\pi}{18} + \sin^{2}\frac{\pi}{9} + \sin^{2}\frac{7\pi}{18} + \sin^{2}\frac{4\pi}{9} =$$
A. 1
B. 4
C. 2
D. 0
Answer

We know that sin(90-x) = cos x

So $sin^2(90-x) = cos^2x$

$$\Rightarrow \sin^{2}\left(\frac{\pi}{2} - \frac{\pi}{9}\right)$$
$$\Rightarrow \cos^{2}\frac{7\pi}{18}$$
$$\Rightarrow \sin^{2}\left(\frac{\pi}{2} - \frac{\pi}{18}\right)$$
$$\Rightarrow \cos^{2}\frac{4\pi}{9}$$

And $sin^2x + cos^2x = 1$

Rearranging we get,

$$\Rightarrow \sin^2 \frac{7\pi}{18} + \cos^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} + \cos^2 \frac{4\pi}{9}$$
$$= 1+1$$
$$= 2$$
18. Question

Mark the correct alternative in the following:

```
If \tan A + \cot A = 4, then \tan^4 A + \cot^4 A is equal to
```

A. 110

B. 191

C. 80

D. 194

Answer

Given: tan A + cot A = 4

$$\Rightarrow \tan A + \frac{1}{\tan A} = 4$$

Squaring both sides we get

$$\Rightarrow \left(\tan A + \frac{1}{\tan A}\right)^2 = 4^2$$

$$\Rightarrow \tan^2 A + \frac{1}{\tan^2 A} + 2 \cdot \tan A \cdot \frac{1}{\tan A} = 16$$
$$\Rightarrow \tan^2 A + \frac{1}{\tan^2 A} = 14$$

Squaring both sides we get

$$\Rightarrow \left(\tan^2 A + \frac{1}{\tan^2 A}\right)^2 = 14^2$$

$$\Rightarrow \tan^4 A + \frac{1}{\tan^4 A} + 2 \cdot \tan^2 A \cdot \frac{1}{\tan^2 A} = 196$$

$$\Rightarrow \tan^4 A + \frac{1}{\tan^4 A}$$

=194

19. Question

Mark the correct alternative in the following:

If x sin 45° cos² 60° =
$$\frac{\tan^2 60^\circ \csc 30^\circ}{\sec 45^\circ \cot^{2^\circ} 30^\circ}$$
, then x =
A. 2
B. 4
C. 8
D. 16
Answer

According to the given question:

⇒
$$x = \frac{\tan^2 60 \csc 30}{\sec 45 \cot^2 30 \sin 45 \cos^2 60}$$

⇒ $x = \frac{(\sqrt{3})^2 \cdot 2}{\sqrt{2} \cdot (\sqrt{3})^2 \cdot \frac{1}{\sqrt{2}} \cdot (\frac{1}{2})^2}$

⇒ x =8.

20. Question

Mark the correct alternative in the following:

If A lies in second quadrant and 3 tan A + 4 = 0, then the value of 2 cot $A - 5 \cos A + \sin A$ is equal to

- A. -53/10
- B. 23/10
- C. 37/10
- D. 7/10

Answer

Given:

3tanA + 4 = 0

 $\Rightarrow \tan A = \frac{-4}{3}$

$$\tan^{2}x + 1 = \sec^{2}x$$

$$\Rightarrow \left(\frac{-4}{3}\right)^{2} + 1 = \sec^{2}x$$

$$\Rightarrow \sec^{2}A = \frac{16}{9} + 1$$

$$\Rightarrow \sec^{2}A = \frac{25}{9}$$

$$\Rightarrow \sec^{2}A = \frac{5}{3}$$

$$\Rightarrow \cos A = -\frac{3}{5}$$

Because in second quadrant cos is negative.

$$\Rightarrow \cot A = \frac{-3}{4}$$

$$\sin^{2}x + \cos^{2}x = 1$$

$$\Rightarrow \sin^{2}x = 1 - \cos^{2}x$$

$$\Rightarrow \sin^{2}A = 1 - \left(\frac{9}{25}\right)$$

$$\Rightarrow \sin^{2}A = \frac{16}{25}$$

$$\Rightarrow \sin A = \frac{4}{5}$$

$$\therefore \text{ The value of } 2 \cot A - 5 \cos A + \sin A =$$

$$\Rightarrow 2\left(\frac{-3}{4}\right) - 5\left(\frac{-3}{5}\right) + \frac{4}{5}$$

$$\Rightarrow \frac{-6}{4} + \frac{15}{5} + \frac{4}{5}$$

$$\Rightarrow \frac{-6}{4} + \frac{19}{5}$$

$$\Rightarrow \frac{-30 + 76}{20}$$

$$\Rightarrow \frac{23}{10}$$

21. Question

Mark the correct alternative in the following:

If $\operatorname{cosec} x + \cot x = \frac{11}{2}$, then $\tan x = A$. 21/22 B. 15/16 C. 44/117 D. 117/43 **Answer**

Let cosec x = a, cot x = b

 \therefore According to the question

$$\Rightarrow a + b = \frac{11}{2}$$

But, cosec²x -cot²x = 1
$$\Rightarrow a^{2} - b^{2} = 1$$
$$\Rightarrow (a-b)(a + b) = 1$$
$$\Rightarrow \frac{11}{2}(a - b) = 1$$
$$\Rightarrow a - b = \frac{2}{11}$$
$$a + b = 11/2 \dots (1)$$
$$a - b = 2/11 \dots (2)$$

Adding (1) and (2)
$$\Rightarrow 2a = \frac{11}{2} + \frac{2}{11}$$
$$\Rightarrow a = \frac{125}{44}$$
$$\Rightarrow \frac{125}{44} - \frac{2}{11} = b$$
$$\Rightarrow b = \frac{117}{44}$$
$$\therefore \text{ cot } x = \frac{117}{44}$$
$$\therefore \text{ tan } x = \frac{44}{117}$$

22. Question

Mark the correct alternative in the following:

If $\tan \theta + \sec \theta = e^{x}$, then $\cos \theta$ equals

A.
$$\frac{e^{x} + e^{-x}}{2}$$

B. $\frac{2}{e^{x} + e^{-x}}$
C. $\frac{e^{x} - e^{-x}}{2}$
D. $\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

Answer

We know $tan^2x + 1 = sec^2x...(1)$ Let $tan \theta$ be a and $sec \theta$ be b

According to question

 $a + b = e^{x}$

Manipulating and Substituting in 1 we get

$$\Rightarrow a^{2} - b^{2} = -1$$

$$\Rightarrow (a-b)(a + b) = -1$$

$$\Rightarrow (a-b).e^{x} = -1$$

$$\Rightarrow a-b = -e^{-x}$$

$$a + b = e^{x}$$

$$a-b = -e^{-x}$$

subtracting above equations we get

$$2b = e^{x} + e^{-x}$$

$$\Rightarrow b = \frac{e^{x} + e^{-x}}{2}$$

$$\Rightarrow \sec\theta = \frac{e^{x} + e^{-x}}{2}$$

$$\Rightarrow \cos\theta = \frac{2}{e^{x} + e^{-x}}$$

23. Question

Mark the correct alternative in the following:

If sec $x + \tan x = k$, cos x =

A.
$$\frac{k^{2} + 1}{2k}$$

B. $\frac{2k}{k^{2} + 1}$
C. $\frac{k}{k^{2} + 1}$
D. $\frac{k}{k^{2} - 1}$

Answer

We know $tan^2x + 1 = sec^2x...(1)$

Let tan \boldsymbol{x} be a and sec \boldsymbol{x} be b

According to question

a + b =k

Manipulating and Substituting in 1 we get

$$\Rightarrow a^{2} - b^{2} = -1$$

$$\Rightarrow (a-b)(a + b) = -1$$

$$\Rightarrow (a-b).k = -1$$

$$\Rightarrow a-b = -k^{-1}$$

a + b = k

 $a-b = -k-^1$

subtracting above equations we get

$$2b = k + k^{-1}$$

$$\Rightarrow b = \frac{k^2 + 1}{2k}$$

$$\Rightarrow \sec \theta = \frac{k^2 + 1}{2k}$$

$$\Rightarrow \sec \theta = \frac{k^2 + 1}{2k}$$

$$\Rightarrow \cos \theta = \frac{2k}{k^2 + 1}$$

24. Question

Mark the correct alternative in the following:

If
$$f(x) = \cos^2 x + \sec^2 x$$
, the
A. $f(x) < 1$
B. $f(x) = 1$
C. $2 < f(x) < 1$
D. $f(x) \ge 2$
Answer
 $\tan^2 x + 1 = \sec^2 x$
 $\sin^2 x + \cos^2 x = 1$
 $\therefore \cos^2 x = 1 - \sin^2 x$
Substituting in $f(x)$ we get
 $1 - \sin^2 x + \tan^2 x + 1$
 $\Rightarrow 2 - \sin^2 x + \frac{\sin^2 x}{\cos^2 x}$
 $\Rightarrow 2 - \frac{\sin^2 x \cos^2 x + \sin^2 x}{\cos^2 x}$

$$\Rightarrow 2 + \frac{\sin^2 x (1 - \cos^2 x)}{\cos^2 x}$$
$$\sin^4 x$$

$$\Rightarrow 2 + \frac{\sin x}{\cos^2 x}$$

Minimum value of $\frac{\sin^4 x}{\cos^2 x}$ is 0.

∴ f(x)≥ 2.

25. Question

Mark the correct alternative in the following:

Which of the following is incorrect?

A. sin x = -1/5

B. $\cos x = 1$

C. sec x = 1/2

D. tan x = 20

Answer

Sec x = 1/2 is incorrect because for no real value of x sec x attains 1/2.

26. Question

Mark the correct alternative in the following:

The value of cos 1° cos 2° cos 3° ... cos 179° is

A. $1/\sqrt{2}$

В. О

C. 1

D. –1

Answer

 $Cos 1 \times cos 2 \times cos 3 \times \times cos 179$ = cos 1 × cos 2 × cos 3 × × cos 90 × × cos 179 = cos 1 × cos 2 × cos 3 × × 0 × × cos 179 = 0 × cos 1 × cos 2 × cos 3 × × cos 179 = 0

27. Question

Mark the correct alternative in the following:

```
The value of tan 1° tan 2° tan 3° ... tan 89° is
```

A. 0

B. 1

C. 1/2

D. not defined

Answer

```
tan 1° tan 2° tan 3° ... tan 89° = tan (90° - 89° ) tan<br/>(90° - 88° ) tan<br/>(90° - 87°) ... tan<br/>(90° - 46° ) tan 45° tan 46° .... tan 89°
```

= cot 89° cot 88° cot 87° cot 46° tan 45° tan 46° tan 89°

 $(\because \tan(90^\circ - \theta) = \cot \theta)$

 $=\frac{1}{\tan 89^{\circ}} \times \frac{1}{\tan 88^{\circ}} \times \frac{1}{\tan 87^{\circ}} \times \dots \frac{1}{\tan 46^{\circ}} \times \tan 45^{\circ} \tan 46^{\circ} \dots \tan 89^{\circ}$

= tan 45°

= 1

28. Question

Mark the correct alternative in the following:

Which of the following is correct?

A. sin $1^{\circ} > \sin 1$

B. sin $1^{\circ} < \sin 1$

C. sin $1^\circ = \sin 1$

D.
$$\sin 1^{\circ} = \frac{\pi}{180} \sin 1$$

Answer

$$\Rightarrow 1^{\circ} = \frac{\pi}{180} \text{ rad}$$
$$\Rightarrow 1 \text{ rad} = \frac{180^{\circ}}{\pi}$$
$$\therefore 1 \text{ rad} = 57.32^{\circ}$$

In Range 0 to $\pi/2$ sin x is an increasing function

 \therefore sin1 will always be greater than sin1°

Because $sin1 = sin57.32^{\circ}$

